不同还原条件下多环芳烃厌氧微生物降解研究:基于文献计量的剖析
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家重点研发计划项目(2016YFD0200302,2016YFD0800200)、国家自然科学基金创新研究群体项目(41721001)、浙江省自然科学基金重大项目(LD21D030001)和国家现代农业产业技术体系(CARS-04)联合资助


Research on Anaerobic Microbial Degradation of Polycyclic Aromatic Hydrocarbons Under Different Reducing Conditions: Analysis Based on Bibliometrics
Author:
Affiliation:

Fund Project:

Supported by the National Key Research and Development Program of China (Nos. 2016YFD0200302 and.2016YFD0800200), the National Natural Science Foundation of China (No. 41721001), the Natural Science Foundation of Zhejiang Province of China (No. LD21D030001) and the Agriculture Research System of MOF and MARA of China(No. CARS-04)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    厌氧微生物降解是环境中多环芳烃(polycyclic aromatic hydrocarbons,PAHs)污染削减的重要途径。为系统、全面地了解PAHs厌氧微生物降解的研究现状,以Web of Science核心数据库为数据源,对该领域已发表文献进行文献计量分析,并以厌氧环境中不同还原条件对应的电子受体还原体系为切入点,分别论述反硝化体系、金属离子还原体系、硫酸盐还原体系和产甲烷体系中的PAHs厌氧微生物降解的研究进展,在此基础上重点对土壤中PAHs厌氧微生物降解研究的现存理论空白和未来发展趋势进行探讨。分析结果表明,PAHs厌氧微生物降解领域的研究整体较少,其中,绝大多数仅针对低环PAHs;不同还原条件中对产甲烷和金属离子还原体系的关注也较少;已有研究多侧重纯培养物或水体、沉积物等环境介质,较少基于土壤展开,且新兴技术在该领域尚未得到广泛应用。因此,目前针对土壤中PAHs厌氧微生物降解的认识尚存在诸多理论空白。土壤是环境中PAHs汇集和积累的重要场所,未来应当尝试将单体稳定同位素分析、稳定同位素核酸探针、组学等多种新兴技术与传统研究方法相结合,从多种角度深入探究土壤PAHs厌氧微生物降解的机制,并将已有的理论和经验在土壤中进行验证,以填补现存理论空白,推进厌氧土壤中PAHs污染微生物修复工作的开展。

    Abstract:

    Objective Polycyclic aromatic hydrocarbons (PAHs) are a kind of persistent organic pollutants that exist widely in various environmental media. As one of the most important ways to eliminate PAHs pollution in the environment, microbial degradation has been widely studied in the past few decades. Many of the polluted environmental media may undergo anaerobic states or remain in anaerobic states, e.g. paddy soils, bottom soils, wetlands, sediments, water. However, existing studies mainly focused on the aerobic environment and paid less attention to the anaerobic environment. Considering the current situation, this study systematically and comprehensively illustrates the research status of anaerobic microbial degradation of PAHs.Method The core collection database of Web of Science was used as the data source to conduct a bibliometric analysis of published literature in this field, with the aid of two pieces of software, VOSviewer and CiteSpace. The main contents of the bibliometric analysis included the year of publication, disciplines, keywords frequencies, keywords co-occurrence and most cited papers. In addition, by classifying different electron acceptors based on their reducing sequence, this paper discussed the research progress regarding anaerobic microbial degradation of PAHs in denitrification, metal ion reducing, sulfate reducing and methanogenesis conditions, respectively, with a focus on typical degrading microbes and mechanisms. On this basis, the existing theoretical gaps and future development trends in the field of PAHs anaerobic microbial degradation in the soil were discussed emphatically.Result The results showed that since 1991, the number of studies in this field showed the trend of fluctuating growth but was still relatively small on the whole, and most of them only focused on low-ring PAHs, especially naphthalene. Among the four different reducing systems, denitrification and sulfate reducing systems were studied more extensively, while less attention was paid to metal ion reducing and methanogenesis systems. Most significantly, the majority of mechanical studies remained at a relatively superficial level, without exposing the biological mechanisms of PAHs anaerobic microbial degradation and the interactions between functional microbes. Emerging technologies have not been commonly used in this field. Most studies were based on pure culture or environmental media such as water and sediment, but few were based on soil system.Conclusion As a result, there are still many theoretical gaps in the understanding of anaerobic microbial degradation of PAHs in the soil at present. Soil is the main site for the confluence and accumulation of PAHs in the environment. In the future, researchers should try to combine Compound-specific Stable Isotope Analysis (CSIA), DNA-stable isotope probing(DNA-SIP), Omics and other emerging technologies with traditional research methods to explore the mechanisms of PAHs anaerobic microbial degradation in the soil from a variety of different aspects, and verify the applicability of existing theories and experience to the soil, so as to fill the current theoretical gaps and promote the microbial remediation of PAHs pollution in anaerobic soil.

    参考文献
    相似文献
    引证文献
引用本文

朱燕婕,何艳,徐建明.不同还原条件下多环芳烃厌氧微生物降解研究:基于文献计量的剖析[J].土壤学报,2022,59(6):1574-1582. DOI:10.11766/trxb202102060081 ZHU Yanjie, HE Yan, XU Jianming. Research on Anaerobic Microbial Degradation of Polycyclic Aromatic Hydrocarbons Under Different Reducing Conditions: Analysis Based on Bibliometrics[J]. Acta Pedologica Sinica,2022,59(6):1574-1582.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-02-06
  • 最后修改日期:2021-05-11
  • 录用日期:2021-07-15
  • 在线发布日期: 2021-07-16
  • 出版日期: