新型碱性肥料治酸改土降镉的效果和机理
作者:
基金项目:

国家重点研发计划项目(2018YFD0201100) ,广东省省级重大科研项目(2016KZDXM029)和国家现代农业产业技术体系建设专项(CARS-31-06)资助


A Novel Alkaline Fertilizer and Its Function as well as Mechanism to Remediation Soil Acid and Cd Pollution
Author:
Fund Project:

Supported by the National Key Research and Development Program of China (No. 2018YFD0201100), the Major Scientific Research Projects of Guangdong Province in China (No.2016KZDXM029) and the Special Project for the Construction of China Agriculture Research System (No. CARS-31-06)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [41]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    通过大田试验和模拟实验,研究碱性肥料治酸改土的效果、土壤pH对Cd吸附解吸热力学性能的影响,为碱性肥料治理土壤酸化和降低土壤Cd污染提供理论依据。结果表明:碱性肥料能明显提高大田土壤pH、显著降低土壤有效镉含量,明显遏制土壤酸化和土壤镉污染。施用碱性肥料是提高土壤pH和降低土壤有效镉含量的有效措施。当土壤Cd含量小于等于60 mg·L–1时,pH从5增加到9时几乎不影响Cd的吸附强度(在15.77 mg·kg–1/mg·L–1~16.67 mg·kg–1/mg·L–1之间);而当Cd含量大于60 mg·L–1,Cd的吸附强度随pH的升高而明显增大,但吸附率随浓度的增大而减少。土壤Cd含量相等时,pH越高土壤Cd的吸附量及吸附率越大。土壤Cd的等温吸附曲线适于用Freundlich方程拟合和定量描述。土壤吸附Cd是自发反应过程,表现为Cd的吸附自由能(△G)为负。同一pH下,△G随着土壤Cd含量的增大而增大;△G随着土壤溶液pH的升高而减小。碱性条件下Cd吸附自由能小于酸性条件下的△G,即碱性条件下的Cd吸附反应更加剧烈。可见,提高土壤pH有利于增加土壤吸附Cd的能力。当土壤镉含量相对较低时,镉吸附为专性吸附;而当镉含量增加或当镉污染程度大时,在高pH下土壤可变电荷及其非专性吸附对Cd吸附起到积极作用。在农业生产实践中,建议采取施用碱性肥料的措施遏制土壤酸化,提高土壤pH,增加Cd的吸附量,降低土壤Cd的生物有效性,达到以肥治酸降镉的目的。

    Abstract:

    【Objective】 This study aimed to provide a theoretical basis for reducing soil Cd pollution through the application of alkaline fertilizer.【Method】Field and constant temperature incubation experiments were carried out to study the effect of alkaline fertilizer on soil acidification, Cd pollution, and the effect of soil pH on the thermodynamic properties of soil Cd adsorption and desorption.【Result】Application of alkaline fertilizer significantly (P < 0.05) increased the soil pH and reduced the content of available Cd. This shows that soil treatment with alkaline fertilizer is an effective and reliable measure to reduce soil available or extractable Cd. When the ambient Cd concentration was ≤60 mg·L–1, pH values from 5.0 to 9.0 had almost no effect on the adsorption strength of Cd (between 15.77 mg·kg–1/mg·L–1 and 16.67 mg·kg–1/mg·L–1) while Cd concentrations > 60 mg·L–1 showed increased adsorption strength as the pH was increased. Nevertheless, the adsorption rate decreased with the increase in the initial concentration of Cd. Under the same Cd concentration conditions, the higher the pH value, the higher the adsorption capacity and adsorption rate of Cd. The Freundlich, Langmuir, and Temkin equations fitted the Cd isothermal adsorption data well. Of all three equations, the Freundlich equation had the best fit and was the most suitable to quantitatively describe the characteristics of Cd adsorption. The adsorption of Cd was a spontaneous process and characterized by a negative adsorption free energy (△G). Importantly, △Gincreased with an increase in Cd concentration at constant pH whereas △Gdecreased with an increase in soil pH. Under alkaline conditions, △G was lower than under acidic conditions. However, Cd adsorption was more intense under alkaline conditions than in acidic conditions. This shows that increasing the soil pH with alkaline fertilizer was beneficial in improving the Cd adsorption capacity of the soil. At relatively low Cd concentration, Cd adsorption occurred through the specific adsorption mechanism. When the degree of Cd contamination was high and at high pH, the variable charge of the soil and its non-obligate adsorption played a positive role. Furthermore, the Cd desorption capacity and the rate decreased significantly (P < 0.05) after the application of alkaline fertilizer. 【Conclusion】 At constant pH and increasing Cd concentration, the adsorption capacity of Cd and the free energy increased while the adsorption rate decreased. Also, at higher soil pH, the adsorption capacity, adsorption rate, and reaction free energy were significantly increased while the desorption rate was decreased. There was a negative correlation between soil pH and the availability of soil Cd. Increasing the soil pH can enhance the ability of soils to fix and passivate Cd, thus, reducing the bioavailability of Cd. It is suggested that alkaline fertilizers should be applied in agricultural practices to manage soil acidification, improve soil pH, increase heavy metal cations adsorption and reduce their bioavailability in soils. This will help to control soil acidity and reduce heavy metals pollution in agro-production.

    参考文献
    [1] Li Y,Zhong G M,Huang J P,et al. Survey on soil cadmium content in Guangxi Province in 2011—2013[J]. Journal of Environmental Hygiene,2014,4(6):544—547.[黎勇,钟格梅,黄江平,等. 2011—2013年广西农田土壤镉含量调查[J]. 环境卫生学杂志,2014,4(6):544—547.]
    [2] Xu Y N,Zhang J H,Ke H L,et al. Cd contamination of farmland soil in a gold mining area and its environmental effects[J]. Geology in China,2013,40(2):636—643.[徐友宁,张江华,柯海玲,等. 某金矿区农田土壤镉污染及其环境效应[J]. 中国地质,2013,40(2):636—643.]
    [3] Qin W S,Zou X J,Qiu R L. Health risk of heavy metals to the general public in Guangzhou,China via consumption of vegetables[J]. Journal of Agro-Environment Science,2008,27(4):1638—1642.[秦文淑,邹晓锦,仇荣亮. 广州市蔬菜重金属污染现状及对人体健康风险分析[J]. 农业环境科学学报,2008,27(4):1638—1642.]
    [4] Yang Z J. Cadmium pollution for animals and its prevention[J]. China Animal Health,2008,10(5):55—60.[杨自军. 镉的污染及对动物的危害与防治[J]. 中国动物保健,2008,10(5):55—60.]
    [5] Blake L,Goulding K W T. Effects of atmospheric deposition,soil pH and acidification on heavy metal contents in soils and vegetation of semi-natural ecosystems at Rothamsted Experimental Station,UK[J]. Plant and Soil,2002,240(2):235—251.
    [6] Zhao X M,Dong D M,Hua X Y,et al. Distribution characters and bioactivity of lead,cadmium,chromium and arsenic in farmland soils near pollution sources[J]. Journal of Agro-Environment Science,2009,28(8):1573—1577.[赵兴敏,董德明,花修艺,等. 污染源附近农田土壤中铅镉铬砷的分布特征和生物有效性研究[J]. 农业环境科学学报,2009,28(8):1573—1577.]
    [7] Wu Q T,Xu Z L,Meng Q Q,et al. Characterization of cadmium desorption in soils and its relationship to plant uptake and cadmium leaching[J]. Plant and Soil,2004,258(1):217—226.
    [8] Chaudhary M,Mobbs H J,Almås Å R,et al. Assessing long-term changes in cadmium availability from Cd-enriched fertilizers at different pH by isotopic dilution[J]. Nutrient Cycling in Agroecosystems,2011,91(2):109—117.
    [9] Guttormsen G,Singh B R,Jeng A S. Cadmium concentration in vegetable crops grown in a sandy soil as affected by Cd levels in fertilizer and soil pH[J]. Fertilizer Research,1995,41(1):27—32.
    [10] Del Castilho P,Chardon W J. Uptake of soil cadmium by three field crops and its prediction by a pH-dependent Freundlich sorption model[J]. Plant and Soil,1995,171(2):263—266.
    [11] Pietrzykowski M,Antonkiewicz J,Gruba P,et al. Content of Zn,Cd and Pb in purple moor-grass in soils heavily contaminated with heavy metals around a zinc and lead ore tailing landfill[J]. Open Chemistry,2018,16(1):1143—1152.
    [12] Olsson Å,Persson L,Olsson S. Influence of soil characteristics on yield response to lime in sugar beet[J]. Geoderma,2019,337:1208—1217.
    [13] Rafiq M T,Aziz R,Yang X E,et al. Cadmium phytoavailability to rice(Oryza sativa L.)grown in representative Chinese soils. A model to improve soil environmental quality guidelines for food safety[J]. Ecotoxicology and Environmental Safety,2014,103:101—107.
    [14] Xian X F,In Shokohifard G. Effect of pH on chemical forms and plant availability of cadmium,zinc,and lead in polluted soils[J]. Water,Air,and Soil Pollution,1989,45(3/4):265—273.
    [15] Zachara J M,Smith S C,McKinley J P,et al. Cadmium sorption on specimen and soil smectites in sodium and calcium electrolytes[J]. Soil Science Society of America Journal,1993,57(6):1491—1501.
    [16] Franchi A,Davis A P. Desorption of cadmium(II)from artificially contaminated sediments[J]. Water,Air,and Soil Pollution,1997,100(1/2):181—196.
    [17] Wu D M,Fu Y Q,Yu Z W,et al. Status of red soil acidification and aluminum toxicity in South China and prevention[J]. Soils,2013,45(4):577—584.[吴道铭,傅友强,于智卫,等. 我国南方红壤酸化和铝毒现状及防治[J]. 土壤,2013,45(4):577—584.]
    [18] Zeng X B. Acidification of red soils and control methods[J]. Chinese Journal of Soil Science,2000,31(3):111—113,145.[曾希柏. 红壤酸化及其防治[J]. 土壤通报,2000,31(3):111—113,145.]
    [19] Cai Z J,Sun N,Wang B R,et al. Effects of long-term fertilization on pH of red soil,crop yields and uptakes of nitrogen,phosphorous and potassium[J]. Plant Nutrition and Fertilizer Science,2011,17(1):71—78.[蔡泽江,孙楠,王伯仁,等. 长期施肥对红壤pH、作物产量及氮、磷、钾养分吸收的影响[J]. 植物营养与肥料学报,2011,17(1):71—78.]
    [20] Zhou X Y,Xu M G,Zhou S W,et al. Soil acidification characteristics in Southern China's croplands under long-term fertilization[J]. Journal of Plant Nutrition and Fertilizer,2015,21(6):1615—1621.[周晓阳,徐明岗,周世伟,等. 长期施肥下我国南方典型农田土壤的酸化特征[J]. 植物营养与肥料学报,2015,21(6):1615—1621.]
    [21] Zhang L L,Fan X L,Zhang L D,et al. Effects of alkaline fertilizer on cadmium content in rice and paddy soil[J]. Chinese Journal of Applied Ecology,2016,27(3):891—896.[张亮亮,樊小林,张立丹,等. 碱性肥料对稻田土壤和稻米镉含量的影响[J]. 应用生态学报,2016,27(3):891—896.]
    [22] Jiang J Q,Zhou L,Zhang X L,et al. Effects of calcinated dolomite on the amendment of acid soil and release kinetics of Ca-Mg[J]. Transactions of the Chinese Society of Agricultural Engineering,2020,36(9):235—244.[江家泉,周亮,张晓龙,等. 煅烧对白云石治酸效果及其钙镁释放动力学特性的影响[J]. 农业工程学报,2020,36(9):235—244.]
    [23] Guo Z X,Wang J,Chai M,et al. Spatiotemporal variation of soil pH in Guangdong Province of China in past 30 years[J]. Chinese Journal of Applied Ecology,2011,22(2):425—430.[郭治兴,王静,柴敏,等. 近30年来广东省土壤pH的时空变化[J]. 应用生态学,2011,22(2):425—430.]
    [24] Dai W H,Huang R,Wu L,et al. Relationships between soil organic matter content(SOM)and pH in topsoil of zonal soils in China[J]. Acta Pedologica Sinica,2009,46(5):851—860.[戴万宏,黄耀,武丽,等. 中国地带性土壤有机质含量与酸碱度的关系[J]. 土壤学报,2009,46(5):851—860.]
    [25] He J Z,Li X Y,Xu F L. The surface charge properties of soils in Tianbao mountains ⅱ. the point of zero charge(pzc)and the point of zero net charge(pznc)[J]. Journal of Huazhong Agricultural University,1992,11(1):57—63.[贺纪正,李学垣,徐凤琳. 天宝山土壤的表面电荷特性 Ⅱ.土壤的电荷零点(PZC)和净电荷零点(PZNC)[J]. 华中农业大学学报,1992,11(1):57—63.]
    [26] Wang J G. Adsorption-desorption characteristics of cadmium in typical agricultural soils in China[D]. Yangling,Shannxi:Northwest A & F University,2012.[王金贵. 我国典型农田土壤中重金属镉的吸附—解吸特征研究[D]. 陕西杨凌:西北农林科技大学,2012.]
    [27] Wang J G,Lü J L,Li Z R. Study on energy characteristics and hysteresis effect of cadmium in soils[J]. Journal of Anhui Agricultural Sciences,2013,41(25):10290—10293.[王金贵,吕家珑,李宗仁. 镉在土壤中吸附的能量特征和解吸滞后效应研究[J]. 安徽农业科学,2013,41(25):10290—10293.]
    [28] Wang Y Y,Wen H,Shi X Y,et al. Research on the thermodynamics and kinetics of adsorption-desorption of cadmium on the different soil colloids[J]. Journal of Safety and Environment,2006,6(3):72—76.[王英英,温华,史小云,等. 土壤矿质胶体对镉的吸附-解吸热力学与动力学研究[J]. 安全与环境学报,2006,6(3):72—76.]
    [29] Zhang H M,Xu M G,Lu J L,et al. A Review of Studies on Effects of pH on Cadmium Sorption and Desorption in Soil pH[J]. Journal of Agro-Environment Science,2005,24(z1):320—324.[张会民,徐明岗,吕家珑,等. 对土壤及其组分吸附和解吸镉的影响研究进展[J].农业环境科学学报,2005,24(z1):320—324.]
    [30] Zachara J M,Smith S C. Edge complexation reactions of cadmium on specimen and soil-derived smectite[J]. Soil Science Society of America Journal,1994,58(3):762—769.
    [31] Luo H T,Dong Y Y,Li X Y. Effect of phosphate adsorption on the secondary adsorption of Cu,Zn,Cd in variable charge soils[J]. Journal of Huazhong Agricultural University,1992,11(4):358—363.[罗厚庭,董元彦,李学垣. 可变电荷土壤吸附磷酸根后对Cu、Zn、Cd次级吸附的影响[J]. 华中农业大学学报,1992,11(4):358—363.]
    [32] Liang J,Xu R K,Jiang X,et al. Adsorption and desorption of Cu(Ⅱ),Pb(II)and Cd(II)in two variable charge soils different in pH[J]. Soils,2007,39(6):992—995.[梁晶,徐仁扣,蒋新,等. 不同pH下两种可变电荷土壤中Cu(Ⅱ)、Pb(Ⅱ)和Cd(Ⅱ)吸附与解吸的比较研究[J]. 土壤,2007,39(6):992—995.]
    [33] Bolton K A,Evans L J. Cadmium adsorption capacity of selected Ontario soils[J]. Canadian Journal of Soil Science,1996,76(2):183—189.
    [34] Boekhold A E,Temminghoff E J M,.E.A.T.M. Van der ZEE. Influence of electrolyte composition and pH on cadmium sorption by an acid sandy soil[J]. Journal of Soil Science,1993,44(1):85—96.
    [35] Tahervand S,Jalali M. Sorption,desorption,and speciation of Cd,Ni,and Fe by four calcareous soils as affected by pH[J]. Environmental Monitoring and Assessment,2016,188(6):1—12.
    [36] Martín-Torre M C,Ruiz G,Galán B,et al. Generalised mathematical model to estimate Zn,Pb,Cd,Ni,Cu,Cr and As release from contaminated estuarine sediment using pH-static leaching tests[J]. Chemical Engineering Science,2015,138:780—790.
    [37] Xu M G,Zhang Q,Li J M. The characteristics of adsorption-desorption of Cd in yellow brown earth with pH[J]. Soils and Fertilizers,2004(5):3—5.[徐明岗,张青,李菊梅. 不同pH下黄棕壤镉的吸附-解吸特征[J]. 土壤肥料,2004(5):3—5.]
    [38] Christensen T H. Cadmium soil sorption at low concentrations:II. Reversibility,effect of changes in solute composition,and effect of soil aging[J]. Water,Air,and Soil Pollution,1984,21(1/2/3/4):115—125.
    [39] Shi K,Xu H,Tian Y F. Effect of acid and organic matter to Cr in soil[J]. Reclaim and Rice Cultivation,2003,33(2):30—33.[史锟,徐虹,田艳芬. 酸和有机质对土壤镉影响的研究[J]. 垦殖与稻作,2003,33(2):30—33.]
    [40] Chen N,Zhang H,Yang H M,et al. Effects of soil pH on soil cadmium formations and its accumulation in rice[J]. Journal of Hunan Agricultural University(Natural Sciences),2018,44(2):176—182.[陈楠,张昊,杨慧敏,等. 土壤pH对土壤镉形态及稻米镉积累的影响[J]. 湖南农业大学学报(自然科学版). 2018,44(2):176—182.]
    [41] Yi Y K. Effects of soil pH on cadmium uptake and growth in rice cultivars with low cadmium accumulation[D]. Changsha:Hunan Agricultural University,2017.[易亚科. 土壤pH对低镉积累水稻品种镉吸收及生长发育的影响[D]. 长沙:湖南农业大学,2017.]
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

曹巧滢,江家泉,王学江,范佳妍,詹曜玮,张立丹,李峰,孙少龙,仇荣亮,樊小林.新型碱性肥料治酸改土降镉的效果和机理[J].土壤学报,2023,60(1):175-188. DOI:10.11766/trxb202102100092 CAO Qiaoying, JIANG Jiaquan, WANG Xuejiang, FAN Jiayan, ZHAN Yaowei, ZHANG Lidan, LI Feng, SUN Shaolong, QIU Rongliang, FAN Xiaolin. A Novel Alkaline Fertilizer and Its Function as well as Mechanism to Remediation Soil Acid and Cd Pollution[J]. Acta Pedologica Sinica,2023,60(1):175-188.

复制
分享
文章指标
  • 点击次数:448
  • 下载次数: 1724
  • HTML阅读次数: 1309
  • 引用次数: 0
历史
  • 收稿日期:2021-02-10
  • 最后修改日期:2021-05-03
  • 录用日期:2021-07-08
  • 在线发布日期: 2021-07-09
文章二维码