不同施氮水平下土壤微生物种群异步性与稻麦产量的关系
作者:
中图分类号:

S154.3

基金项目:

国家自然科学基金项目(41977080,31902114)资助


The Relationship between Soil Microbial Population Asynchrony and Crop Yield in Rice-Wheat Rotation with Gradient Nitrogen Inputs
Author:
Fund Project:

Supported by the National Natural Science Foundation of China (Nos. 41977080 and 31902114 )

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [42]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    研究稻麦轮作体系中施氮水平对土壤微生物多样性和异步性的影响,可为调控土壤微生物区系以维持作物稳产高产提供理论依据和科学指导。采集长期稻麦轮作体系中不同施氮水平下作物关键生育时期的土壤样品,使用高通量测序技术分析施氮水平对土壤微生物多样性和异步性的影响,研究施氮水平通过改变土壤微生物异步性对稻麦产量产生的影响。小麦季和水稻季的施氮水平梯度分别为:0、50、100、200、300 kg·hm–2和0、90、180、270、360 kg·hm–2;土壤样品采集时期分别为:小麦种植前、拔节期、孕穗期、扬花期、成熟期和水稻种植前、最大分蘖期、拔节孕穗期、扬花期、成熟期。结果表明,施氮水平对各生育时期的土壤微生物多样性和组成均产生显著影响。施氮水平可解释约12%的水稻季微生物丰富度变异(P < 0.05)。当小麦季和水稻季施氮水平分别为100和180 kg·hm–2时,土壤微生物群落在作物多个生长阶段均能维持相对较高水平的丰富度。施氮水平可解释9%~11%的小麦季/水稻季微生物群落组成变异(P < 0.05)。随着施氮水平的提高,小麦季土壤中PhenylobacteriumSphingomonasCyanobacteria GpIDesulfovirgaLacibacterTerrimonas属和水稻季土壤中DesulfovirgaSpartobacteria genera incertae sedisOhtaekwangiaAcidobacteria Gp7ArenimonasNiastella属的种群异步性显著上升。其中,PhenylobacteriumDesulfovirga属的种群异步性和DesulfovirgaSpartobacteria genera incertae sedisOhtaekwangiaArenimonas属的种群异步性分别与小麦、水稻的产量存在显著正相关关系。稻麦轮作体系中,土壤微生物多样性受到施氮水平的持续性影响,并随生育期推移而发生变化。施氮水平能够直接影响微生物种群异步性,从而影响微生物功能的互补性,进而对稻麦系统的产量产生积极作用。

    Abstract:

    Objective The object of this study was to explore the effect of nitrogen addition rate on the relationship between soil microbial diversity and asynchrony in rice-wheat rotation.Method We collected soil samples at key growth stages in rice-wheat rotation under different nitrogen addition rates in a long-term experiment and used high-throughput sequencing technology to analyze the effect of nitrogen addition rate on soil microbial diversity. Also, we explored the effects of nitrogen addition rates on yield by altering soil microbial asynchrony. The gradient N addition rates in field experiment were 0, 50, 100, 200, 300 kg·hm–2 for wheat and 0, 90, 180, 270, 360 kg·hm–2 for rice. The key growth stages when soil samples were collected include: fallow before wheat planting, jointing, booting, flowering, and maturing during the wheat season, and fallow before rice planting, max-tillering, shooting, flowering, and maturing during rice season.Result N addition rates impacted soil microbial diversity and composition in each growth stage, and the N addition rate could significantly account for about 12% variations of microbial richness in the rice period. When the N addition rates were 100 or 180 kg·hm–2, soil microbial diversity in the wheat or rice seasons, respectively, was maintained at a relatively high level across all plant developmental stages. Also, the N addition rate could significantly account for 9%-11% variations in microbial community composition in the wheat and rice period. With the increase of N addition rate, the asynchrony of some microbial populations was significantly increased during the wheat (e.g. Phenylobacterium, Sphingomonas, Cyanobacteria GpI, Desulfovirga, Lacibacter, Terrimonas) and rice seasons (e.g. Desulfovirga, Spartobacteria genera incertae sedis, Ohtaekwangia, Acidobacteria Gp7, Arenimonas, Niastella). Importantly, the wheat and rice yields showed positive relationships with the asynchronies of Phenylobacterium and Desulfovirga and with the asynchronies of Desulfovirga, Spartobacteria genera incertae sedis, Ohtaekwangia and Arenimonas, respectively.Conclusion Nitrogen addition rate has a constant impact on soil microbial diversity in rice-wheat rotation during plant development, which changes microbial population asynchrony, and then improves certain functional complementation to increase crop yield. The results of this study can provide a scientific basis and practical guidance for regulating soil microbial communities to maintain high crop yield.

    参考文献
    [1] Cardinale B J, Duffy J E, Gonzalez A, et al. Biodiversity loss and its impact on humanity[J]. Nature, 2012, 486(7401):59-67.
    [2] Hector A, Bagchi R. Biodiversity and ecosystem multifunctionality[J]. Nature, 2007, 448(7150):188-190.
    [3] Hooper D U, Adair E C, Cardinale B J, et al. A global synthesis reveals biodiversity loss as a major driver of ecosystem change[J]. Nature, 2012, 486(7401):105-108.
    [4] Maestre F T, Quero J L, Gotelli N J, et al. Plant species richness and ecosystem multifunctionality in global drylands[J]. Science, 2012, 335(6065):214-218.
    [5] Zavaleta E S, Pasari J R, Hulvey K B, et al. Sustaining multiple ecosystem functions in grassland communities requires higher biodiversity[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(4):1443-1446.
    [6] Hautier Y, Isbell F, Borer E T, et al. Local loss and spatial homogenization of plant diversity reduce ecosystem multifunctionality[J]. Nature Ecology&Evolution, 2018, 2(1):50-56.
    [7] Yachi S, Loreau M. Biodiversity and ecosystem productivity in a fluctuating environment:The insurance hypothesis[J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(4):1463-1468.
    [8] Loreau M. Stability and complexity of ecosystems:New perspectives on an old debate[M]. Princeton, New Jersey:Princeton University Press, 2010:123-163.
    [9] Chesson P. Mechanisms of maintenance of species diversity[J]. Annual Review of Ecology and Systematics, 2000, 31(1):343-366.
    [10] Loreau M, de Mazancourt C. Species synchrony and its drivers:Neutral and nonneutral community dynamics in fluctuating environments[J]. The American Naturalist, 2008, 172(2):E48-E66.
    [11] Gonzalez A, Loreau M. The causes and consequences of compensatory dynamics in ecological communities[J]. Annual Review of Ecology and Systematics, 2009, 40:393-414.
    [12] Huang M, Liu X, Zhou S. Asynchrony among species and functional groups and temporal stability under perturbations:Patterns and consequences[J]. Journal of Ecology, 2020, 108(5):2038-2046.
    [13] Wagg C, Dudenhffer J H, Widmer F, et al. Linking diversity, synchrony and stability in soil microbial communities[J]. Functional Ecology, 2018, 32(5):1280-1292.
    [14] Wagg C, Hautier Y, Pellkofer S, et al. Diversity and asynchrony in soil microbial communities stabilizes ecosystem functioning[J]. eLife, 2021, 10:e62813.
    [15] Bardgett R D, van der Putten W H. Belowground biodiversity and ecosystem functioning[J]. Nature, 2014, 515(7528):505-511.
    [16] Delgado-Baquerizo M, Maestre F T, Reich P B, et al. Microbial diversity drives multifunctionality in terrestrial ecosystems[J]. Nature Communications, 2016, 7:10541.
    [17] Bender S F, Wagg C, van der Heijden M G A. An underground revolution:Biodiversity and soil ecological engineering for agricultural sustainability[J]. Trends in Ecology&Evolution, 2016, 31(6):440-452.
    [18] Bradford M A, Wood S A, Bardgett R D, et al. Discontinuity in the responses of ecosystem processes and multifunctionality to altered soil community composition[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(40):14478-14483.
    [19] Delgado-Baquerizo M, Reich P B, Trivedi C, et al. Multiple elements of soil biodiversity drive ecosystem functions across biomes[J]. Nature Ecology&Evolution, 2020, 4(2):210-220.
    [20] Mori A S, Isbell F, Fujii S, et al. Low multifunctional redundancy of soil fungal diversity at multiple scales[J]. Ecology Letters, 2016, 19(3):249-259.
    [21] Wagg C, Bender S F, Widmer F, et al. Soil biodiversity and soil community composition determine ecosystem multifunctionality[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(14):5266-5270.
    [22] Wagg C, Schlaeppi K, Banerjee S, et al. Fungal-bacterial diversity and microbiome complexity predict ecosystem functioning[J]. Nature Communications, 2019, 10(1):4841.
    [23] van der Heijden M G, Bardgett R D, van Straalen N M. The unseen majority:Soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems[J]. Ecology Letters, 2008, 11(3):296-310.
    [24] van Elsas J D, Chiurazzi M, Mallon C A, et al. Microbial diversity determines the invasion of soil by a bacterial pathogen[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(4):1159-1164.
    [25] Contosta A R, Frey S D, Cooper A B. Soil microbial communities vary as much over time as with chronic warming and nitrogen additions[J]. Soil Biology and Biochemistry, 2015, 88:19-24.
    [26] Matulich K L, Weihe C, Allison S D, et al. Temporal variation overshadows the response of leaf litter microbial communities to simulated global change[J]. The ISME Journal, 2015, 9(11):2477-2489.
    [27] Magoč T, Salzberg S L. FLASH:Fast length adjustment of short reads to improve genome assemblies[J]. Bioinformatics, 2011, 27(21):2957-2963.
    [28] Edgar R C. UPARSE:Highly accurate OTU sequences from microbial amplicon reads[J]. Nature Methods, 2013, 10:996-998.
    [29] Li Q, Song X Z, Gu H H, et al. Nitrogen deposition and management practices increase soil microbial biomass carbon but decrease diversity in Moso bamboo plantations[J]. Scientific Reports, 2016, 6:28235.
    [30] Liu W, Jiang L, Yang S, et al. Critical transition of soil bacterial diversity and composition triggered by nitrogen enrichment[J]. Ecology, 2020, 101(8):e03053.
    [31] Qi X, Wang J G. Distribution and translocation of assimilated C pulse-labeled with 13C for winter wheat (Trticum aestivums L.), as affected by nitrogen supply[J]. Journal of Agro-Environment Science, 2008, 27(6):2524-2530齐鑫,王敬国.应用13C脉冲标记方法研究不同施氮量对冬小麦净光合碳分配及其向地下输入的影响[J].农业环境科学学报, 2008, 27(6):2524-2530.
    [32] Zhu J G, Kou T J, Zeng Q, et al. Effect of elevated atmospheric CO2 concentration and level of nitrogen fertilizer on root respiration and biomass of winter wheat[J]. Chinese Journal of Plant Ecology, 2008, 32(4):922-931朱建国,寇太记,曾青,等. CO2浓度增加和不同氮肥水平对冬小麦根系呼吸及生物量的影响[J].植物生态学报, 2008, 32(4):922-931.
    [33] Zhou J, Guan D, Zhou B, et al. Influence of 34-years of fertilization on bacterial communities in an intensively cultivated black soil in Northeast China[J]. Soil Biology and Biochemistry, 2015, 90:42-51.
    [34] Zhao J, Feng W Q, Qin Y S, et al. Effects of application of nitrogen, phosphorus and potassium fertilizers on soil pH and cadmium availability[J]. Acta Pedologica Sinica, 2010, 47(5):953-961赵晶,冯文强,秦鱼生,等.不同氮磷钾肥对土壤pH和镉有效性的影响[J].土壤学报, 2010, 47(5):953-961.
    [35] Ramirez K S, Craine J M, Fierer N. Nitrogen fertilization inhibits soil microbial respiration regardless of the form of nitrogen applied[J]. Soil Biology and Biochemistry, 2010, 42(12):2336-2338.
    [36] Compton J E, Watrud L S, Porteous L A, et al. Response of soil microbial biomass and community composition to chronic nitrogen additions at harvard forest[J]. Forest Ecology and Management, 2004, 196(1):143-158.
    [37] Kaiser C, Koranda M, Kitzler B, et al. Belowground carbon allocation by trees drives seasonal patterns of extracellular enzyme activities by altering microbial community composition in a beech forest soil[J]. New Phytologist, 2010, 187(3):843-858.
    [38] Rousk J, Bååth E, Brookes P C, et al. Soil bacterial and fungal communities across a pH gradient in an arable soil[J]. The ISME Journal, 2010, 4(10):1340-1351.
    [39] Waldrop M P, Firestone M K. Response of microbial community composition and function to soil climate change[J]. Microbial Ecology, 2006, 52(4):716-724.
    [40] Sasaki T, Lauenroth W K. Dominant species, rather than diversity, regulates temporal stability of plant communities[J]. Oecologia, 2011, 166(3):761-768.
    [41] Tanaka K, Stackebrandt E, Tohyama S, et al. Desulfovirga adipica gen. nov., sp. nov., an adipate-degrading, gram-negative, sulfate-reducing bacterium[J]. International Journal of Systematic and Evolutionary Microbiology, 2000, 50(2):639-644.
    [42] Xing W, Li J, Li D, et al. Stable-isotope probing reveals the activity and function of autotrophic and heterotrophic denitrifiers in nitrate removal from organic-limited wastewater[J]. Environmental Science&Technology, 2018, 52(14):7867-7875.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李明辉,冯绪猛,郭俊杰,郭世伟,沈其荣,凌宁.不同施氮水平下土壤微生物种群异步性与稻麦产量的关系[J].土壤学报,2022,59(6):1670-1682. DOI:10.11766/trxb202106250131 LI Minghui, FENG Xumeng, GUO Junjie, GUO Shiwei, SHEN Qirong, LING Ning. The Relationship between Soil Microbial Population Asynchrony and Crop Yield in Rice-Wheat Rotation with Gradient Nitrogen Inputs[J]. Acta Pedologica Sinica,2022,59(6):1670-1682.

复制
分享
文章指标
  • 点击次数:847
  • 下载次数: 2355
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2021-06-25
  • 最后修改日期:2021-11-19
  • 录用日期:2022-03-17
  • 在线发布日期: 2022-04-15
文章二维码