基于31P NMR的自然成土过程中有机磷组分演变特征及影响因素研究进展
作者:
基金项目:

国家自然科学基金项目(41977004)、中国科学院青年创新促进会会员项目(2019052)和中国科学院地理科学与资源研究所秉维优秀青年人才项目(2017RC203)资助


Research Progress of the Evolution Trends and Controls of Soil Organic Phosphorus Speciation during Natural Pedogenesis Based on Solution 31P Nuclear Magnetic Resonance
Author:
Fund Project:

Supported by the National Natural Science Foundation of China (No.41977004), Youth Innovation Promotion Association of the Chinese Academy of Sciences (CAS) (No.2019052), and the Outstanding Young Talent Project of Institute of Geographic Sciences and Natural Resources Research, CAS (No.2017RC203)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [67]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    土壤有机磷(Po)是土壤中重要的磷库,其形态、含量与生物有效性随成土过程而发生变化,进而影响土壤磷素供应、养分平衡及生态系统生产力。然而,与土壤无机磷(Pi)相比,以往的研究对Po的重视不够,这主要是由于土壤中Po的提取、分析和鉴定方法难于Pi。近年来,随着液相31P核磁共振(31P NMR)波谱技术在土壤学领域的应用,为定量分析土壤Po组分及含量提供了新的技术手段,同时为更好地理解生态系统演化过程中不同形态Po的转化特征奠定了基础。本文主要总结了土壤Po的种类和性质,介绍了液相31P NMR分析土壤Po的原理和方法,在此基础上综述了自然成土过程中不同形态Po的转化特征及其影响因素,并指出了需进一步研究的方向和关键科学问题:包括量化成土过程中不同形态Po转化速率、途径与环境阈值,阐明不同发育阶段土壤Po与C、N等养分之间的耦合关系及其固释机理,构建不同类型土壤Po演化模型。回答上述问题有助于更好地理解地球关键带磷素生物地球化学循环,为不同发育阶段土壤养分管理与调控及土壤资源可持续利用提供理论依据。

    Abstract:

    Soil organic phosphorus (Po) is an important phosphorus pool in soils. The forms, contents and bioavailability of Po change significantly with pedogenesis, which affects soil P supply, nutrient balance and ecosystem productivity. However, compared with inorganic phosphorus (Pi), previous studies paid less attention to Po, which was mainly attributed to the difficulty in the extraction, analysis and identification of different Po speciation. In recent years, the solution 31P nuclear magnetic resonance (31P NMR) spectroscopy was increasingly applied in pedology for characterizing Po compounds, providing a new way for quantitative analysis of Po forms and contents. This significantly improved our understanding of the transformation process of Po during long-term terrestrial ecosystem evolution. This paper systematically summarized the forms and properties of soil Po, and described the principle and procedures of solution 31P NMR spectroscopy for characterizing soil Pospeciation. Then we reviewed the evolution trends and controls of different Pospeciation during natural pedogenesis, and put forward several questions that need to be resolved in the future. Future research priorities include (i) determining the rates, pathways and thresholds of soil Po transformation during long-term soil evolution; (ii) elucidating the coupling relationship between Po and other nutrients such as C and N at different stages of soil evolution and the mechanisms of fixation and release of soil Po; and (iii) building a quantitative model of Po evolution in different types of soils. Providing solutions to the above questions can improve our understanding of the phosphorus biogeochemical cycle in Earth’s Critical Zone and provide a theoretical basis for nutrient management and regulation at different stages of soil evolution, and would promote sustainable utilization of soil resources.

    参考文献
    [1] Huang L M,Zhang G L,Thompson A,et al. Pedogenic transformation of phosphorus during paddy soil development on calcareous and acid parent materials[J]. Soil Science Society of America Journal,2013,77(6):2078—2088.
    [2] Huang L M,Thompson A,Zhang G L. Long-term paddy cultivation significantly alters topsoil phosphorus transformation and degrades phosphorus sorption capacity[J]. Soil and Tillage Research,2014,142(1):32—41.
    [3] Walker T W,Syers J K. The fate of phosphorus during pedogenesis[J]. Geoderma,1976,15(1):1—19.
    [4] Tiessen H,Stewart J W B,Cole C V. Pathways of phosphorus transformations in soils of differing pedogenesis[J]. Soil Science Society of America Journal,1984,48(4):853—858.
    [5] Crews T E,Kitayama K,Fownes J H,et al. Changes in soil phosphorus fractions and ecosystem dynamics across a long chronosequence in Hawaii[J]. Ecology,1995,76(5):1407—1424.
    [6] Vitousek P M,Porder S,Houlton B Z,et al. Terrestrial phosphorus limitation:Mechanisms,implications,and nitrogen-phosphorus interactions[J]. Ecological Applications,2010,20(1):5—15.
    [7] Turner B L,Brenes-Arguedas T,Condit R. Pervasive phosphorus limitation of tree species but not communities in tropical forests[J]. Nature,2018,555(7696):367—370.
    [8] Galván-Tejada N C,Peña-Ramírez V,Mora-Palomino L,et al. Soil P fractions in a volcanic soil chronosequence of Central Mexico and their relationship to foliar P in pine trees[J]. Journal of Plant Nutrition and Soil Science,2014,177(5):792—802.
    [9] Gu C H,Hart S C,Turner B L,et al. Aeolian dust deposition and the perturbation of phosphorus transformations during long-term ecosystem development in a cool,semi-arid environment[J]. Geochimica et Cosmochimica Acta,2019,246:498—514.
    [10] Richardson S J,Peltzer D A,Allen R B,et al. Rapid development of phosphorus limitation in temperate rainforest along the Franz Josef soil chronosequence[J]. Oecologia,2004,139(2):267—276.
    [11] Elser J J,Bracken M E S,Cleland E E,et al. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater,marine and terrestrial ecosystems[J]. Ecology Letters,2007,10(12):1135—1142.
    [12] Wardle D A,Walker L R,Bardgett R D. Ecosystem properties and forest decline in contrasting long-term chronosequences[J]. Science,2004,305(5683):509—513.
    [13] Vindušková O,Pánek T,Frouz J. Soil C,N and P dynamics along a 13 ka chronosequence of landslides under semi-natural temperate forest[J]. Quaternary Science Reviews,2019,213:18—29.
    [14] Du E Z,Terrer C,Pellegrini A F A,et al. Global patterns of terrestrial nitrogen and phosphorus limitation[J]. Nature Geoscience,2020,13(3):221—226.
    [15] Hou E Q,Luo Y Q,Kuang Y W,et al. Global meta-analysis shows pervasive phosphorus limitation of aboveground plant production in natural terrestrial ecosystems[J]. Nature Communications,2020,11:637.
    [16] Huang L M,Jia X X,Zhang G L,et al. Soil organic phosphorus transformation during ecosystem development:A review[J]. Plant and Soil,2017,417(1):17—42.
    [17] Bowman R A,Cole C V. An exploratory method for fractionation of organic phosphorus from grassland soils[J]. Soil Science,1978,125(2):95—101.
    [18] Hedley M J,Stewart J W B,Chauhan B S. Changes in inorganic and organic soil phosphorus fractions induced by cultivation practices and by laboratory incubations[J]. Soil Science Society of America Journal,1982,46(5):970—976.
    [19] Condron L M,Turner B L,Cade-Menun B J. Chemistry and dynamics of soil organic phosphorus[M]. Agronomy Monographs. Madison,WI,USA:American Society of Agronomy,Crop Science Society of America,and Soil Science Society of America,2015:87—121.
    [20] Liu J,Yang J J. Molecular speciation of phosphorus in agricultural soils:Advances over the last 30 years[J]. Acta Pedologica Sinica,2021,58(3):558—567.[刘瑾,杨建军. 近三十年农田土壤磷分子形态的研究进展[J]. 土壤学报,2021,58(3):558—567.]
    [21] McDowell R W,Cade-Menun B,Stewart I. Organic phosphorus speciation and pedogenesis:analysis by solution 31P nuclear magnetic resonance spectroscopy[J]. European Journal of Soil Science,2007,58(6):1348—1357.
    [22] Turner B L,Condron L M,Richardson S J,et al. Soil organic phosphorus transformations during pedogenesis[J]. Ecosystems,2007,10(7):1166—1181.
    [23] Turner B L,Wells A,Condron L M. Soil organic phosphorus transformations along a coastal dune chronosequence under New Zealand temperate rain forest[J]. Biogeochemistry,2014,121(3):595—611.
    [24] Vincent A G,Vestergren J,Gröbner G,et al. Soil organic phosphorus transformations in a boreal forest chronosequence[J]. Plant and Soil,2013,367(1/2):149—162.
    [25] Zhou J,Wu Y H,Turner B L,et al. Transformation of soil organic phosphorus along the Hailuogou post-glacial chronosequence,southeastern edge of the Tibetan Plateau[J]. Geoderma,2019,352:414—421.
    [26] Turner B L,Cade-Menun B J,Condron L M,et al. Extraction of soil organic phosphorus[J]. Talanta,2005,66(2):294—306.
    [27] Harrison A F. Soil organic phosphorus—A review of world literature[M]. CAB Int.,Wallingford:Oxon,UK,1987.
    [28] Turner B L,Papházy M J,Haygarth P M,et al. Inositol phosphates in the environment[J]. Philosophical Transactions of the Royal Society of London Series B,Biological Sciences,2002,357(1420):449—469.
    [29] Turner B L,Mahieu N,Condron L M. The phosphorus composition of temperate pasture soils determined by NaOH-EDTA extraction and solution 31P NMR spectroscopy[J]. Organic Geochemistry,2003,34(8):1199—1210.
    [30] Cook A M,Daughton C G,Alexander M. Phosphonate utilization by bacteria[J]. Journal of Bacteriology,1978,133(1):85—90.
    [31] Cade-Menun B J,Berch S M,Preston C M,et al. Phosphorus forms and related soil chemistry of Podzolic soils on northern Vancouver Island. I. A comparison of two forest types[J]. Canadian Journal of Forest Research,2000,30(11):1714—1725.
    [32] De Nobili M,Diaz-Raviña M,Brookes P C,et al. Adenosine 5'-triphosphate measurements in soils containing recently added glucose[J]. Soil Biology and Biochemistry,1996,28(8):1099—1104.
    [33] Liang X Q. Soil colloidal phosphorus storage and loss control[M]. Beijing:Science Press,2020.[梁新强. 土壤胶体磷储存与流失阻控[M]. 北京:科学出版社,2020.]
    [34] Keeler J. Understanding NMR Spectroscopy[M]. John Wiley & Sons Ltd:Chichester,UK,2005.
    [35] Cade-Menun B J. Characterizing phosphorus in environmental and agricultural samples by 31P nuclear magnetic resonance spectroscopy[J]. Talanta,2005,66(2):359—371.
    [36] Cade-Menun B J,Preston C M. A comparison of soil extraction procedures for 31P NMR spectroscopy[J]. Soil Science,1996,161(11):770–785.
    [37] Cade-Menun B J,Liu C W,Nunlist R,et al. Soil and litter phosphorus-31 nuclear magnetic resonance spectroscopy:Extractants,metals,and phosphorus relaxation times[J]. Journal of Environmental Quality,2002,31(2):457—465.
    [38] Briceño M,Escudey M,Galindo G,et al. Comparison of extraction procedures used in determination of phosphorus species by 31P-NMR in Chilean volcanic soils[J]. Communications in Soil Science and Plant Analysis,2006,37(11/12):1553—1569.
    [39] Cade-Menun B,Liu C W. Solution phosphorus-31 nuclear magnetic resonance spectroscopy of soils from 2005 to 2013:A review of sample preparation and experimental parameters[J]. Soil Science Society of America Journal,2014,78(1):19—37.
    [40] Cade-Menun B J,Berch S M,Preston C M,et al. Phosphorus forms and related soil chemistry of Podzolic soils on northern Vancouver Island. II. The effects of clear-cutting and burning[J]. Canadian Journal of Forest Research,2000,30(11):1726—1741.
    [41] Lu J,Wang H W,Hao H,et al. Optimizing the method for 31P-NMR analysis of organic phosphorus from wetland sediments[J]. Spectroscopy and Spectral Analysis,2013,33(11):3157—3161.[陆瑾,王海文,郝红,等. 31P-NMR分析湿地沉积物有机磷的方法优化[J]. 光谱学与光谱分析,2013,33(11):3157—3161.]
    [42] McLaren T I,Smernik R J,Simpson R J,et al. Spectral sensitivity of solution 31P NMR spectroscopy is improved by narrowing the soil to solution ratio to 1:4 for pasture soils of low organic P content[J]. Geoderma,2015,257/258:48—57.
    [43] Ebuele V O,Santoro A,Thoss V. Phosphorus speciation by 31P NMR spectroscopy in bracken(Pteridium aquilinum(L.)Kuhn)and bluebell(Hyacinthoides non-scripta(L.)Chouard ex Rothm.)dominated semi-natural upland soil[J]. Science of the Total Environment,2016,566/567:1318—1328.
    [44] Zhang W Q,Jin X,Ding Y K,et al. Composition of phosphorus in wetland soils determined by SMT and solution 31P-NMR analyses[J]. Environmental Science and Polluti潯汮漠杒祥?慥湡摲??椬漲挰栱收洬椲猳琨爹礩?代?????劳??????????????????ぃ??扥牴?孄??嵎??捬桥慡瑲??????潴物散氠????慮歡歮散牥???剮?敥瑰?慳氠???猠獭敥獴獨楯湤杳?瑍畝爮渠潊癯敨牮?潗晩?浥楹挠爦潡扭楰愻氠?扯楮潳洠慌獴獤?灃桨潩獣灨桥潳牴略獲??潋洬戱椹渹愶琮椼潢湲 ̄潛昴?慝渠?楣獄潯瑷潥灬楬挠?搠楗氬畓瑴楥潷湡?浴攠瑉栬潃摡?睥椭瑍桥?慵?洠慂猠獊?戠慁汮愠湥捸敡?浩潮摡整汩孯?崠??匠潳楰汩??楬潡汴潴杩祣?愠湲摥??楸潡捴桩敯浮椠獴瑩牭祥?㈠て?ひ?????????㈠???????㈠????ね??扵牲?嬠??嵴??慣楴敳爠潢???剩?呵潩獤椠????敥渠瑰???数瑨?慲汵??匳漱椠汮?浣楬捥牡潲戠業慡汧?捥潴浩浣甠湲楥瑳楯敮獡?楣湥映汳異敥湣捴楲湯杳?潯牰杹慛湊楝挮?灊桯潵獲灮桡潬爠畯獦?浅楮湶敩牲慯汮業穥慮瑴楡潬渠?極湡?慩?捹漬愲猰琰愶氬″搵用渱攩?挲根爳漦渣漸猲攱焲画攳渰挲攮?楢湲 ̄乛攴眷?娠敔慵汲慮湥摲嬠?崠?????卩??椠捎爬潃扯楮潤汲潯杮礠??捍漮氠潐杨祯??と?????????晵楣慬扥ち????执牮?孴??崠?坥慳湯杮???健?坳異?奣???婬栠潡畳???敮瑭?慮汴???慦爠扰潨湯?摰敨浯慲湵摳?摣牯業癰敯獵?浤楳挠物潮戠楳慯汩?洠楎湡敏版愭汅楄穔慁琠楥潸湴?潡晣?潳牛杊慝渮椠捓?灩桬漠獓灣桩潥牮畣獥?摓畯牣楩湥杴?琠桯敦?敁慭牥汲祩?獡琠慊杯敵?潮晡?猬漲椰氰″搬收瘷攨氲漩瀺洴改渷琦嬣?崲?′?椵漱氰漮朼祢?愾湛搴??攠牃瑡楤汥椭瑍祥?潵普?卂漠楊氮猠??ば??????????㈠?????????????扮爠?孮??嵳?印琾漳挱欼?即?????潎畍浒氠?獰瑥散牴????楦瀠灥潮汶摩?????敮瑴?慬氠???湰癬楥牳漠湷浩整湨琠慡氠?摴牡楮癤敡牲獤?慺湥摤?獭瑥潴楨捯桤椠潡浮敤琠牰楥捡?挠潬湩獢瑲牡慲楹湛瑊獝?漠湇?敯湤穥祲浭敡?愲挰琱椵瘬椲琵椷支猲‵椸渺?猰漲椦氣猸′昱爲漻洱?爴栮椼穢潲猾灛栴改牝攠?瑯潵?捧漠湅琠楏測敒湯瑳慳氠?猠捓愬汃敡孤?崭???敵潮搠敂爠浊愬?????????????????ㄠ???????扩牯?嬠??崠?卩潰湡杲???堠??畩慬湳机??????数?????攭琳?愠汮???湥瑡敲爠獭灡敧据楥晴楩捣?摲楥晳景敮牡敮湣捥攠?楰湥?乴?偯?獣瑯潰楹挠桡楮潤洠敥瑮牺楹捭?栠潨浹敤潲獯瑬慹獳楩獳?摳牴極癤敹獛?湝甮琠牓楯敩湬琠?牣敩汥敮慣獥攠?慯湣摩?獴潹椠汯?洠楁捭牥潲扩楣慡氠?捯潵浲浮畡湬椬琲礰?挳漬洷瀷漨猵椩琺椱漶渳?搦産爸椲渱朲※搱收挴漷洮瀼潢獲椾瑛椵漰湝嬠?嵢??倠汄愬湃瑡?慥渭摍?卮潵楮氠?㈠お水ず??????????????????????m impact of tillage practices and phosphorus fertilization on soil phosphorus forms as determined by 31P nuclear magnetic resonance spectroscopy[J]. Journal of Environmental Quality,2014,43(4):1431—1441.
    [51] Brantley S L. Understanding soil time[J]. Science,2008,321(5895):1454—1455.
    [52] Walker L R,Wardle D A,Bardgett R D,et al. The use of chronosequences in studies of ecological succession and soil development[J]. Journal of Ecology,2010,98(4):725—736.
    [53] Huang L M,Thompson A,Zhang G L,et al. The use of chronosequences in studies of paddy soil evolution:A review[J]. Geoderma,2015,237/238:199—210.
    [54] Nelson L-A,Cade-Menun B J,Walker I J,et al. Soil phosphorus dynamics across a holocene chronosequence of aeolian sand dunes in a hypermaritime environment on Calvert Island,BC,Canada[J]. Frontiers in Forests and Global Change,2020,3:doi:10.3389/ffgc.2020.00083.
    [55] Celi L,Cerli C,Turner B L,et al. Biogeochemical cycling of soil phosphorus during natural revegetation of Pinus sylvestris on disused sand Quarries in Northwestern Russia[J]. Plant and Soil,2013,367(1/2):121—134.
    [56] Spain A V,Tibbett M,Ridd M,et al. Phosphorus dynamics in a tropical forest soil restored after strip mining[J]. Plant and Soil,2018,427(1/2):105—123.
    [57] Luo J,Cheng G W,Li W,et al. Characteristics of nutrient biocycling of natural forests on the Gongga Mountain[J]. Journal of Beijing Forestry University,2005,27(2):13—17.[罗辑,程根伟,李伟,等. 贡嘎山天然林营养元素生物循环特征[J]. 北京林业大学学报,2005,27(2):13—17.]
    [58] Gholz H L,Wedin D A,Smitherman S M,et al. Long-term dynamics of pine and hardwood litter in contrasting environments:Toward a global model of decomposition[J]. Global Change Biology,2000,6(7):751—765.
    [59] Zhou J,Bing H,Wu Y,et al. Weathering of primary mineral phosphate in the early stages of ecosystem development in the Hailuogou Glacier foreland chronosequence[J]. European Journal of Soil Science,2018,69(3):450—461.
    [60] Sun H Y,Wu Y H,Li N,et al. Microbial biomass phosphorus is closely linked to sodium bicarbonate extractable organic P in acid soil of Mt.Gongga[J]. Mountain Research,2017,35(5):709—716.[孙宏洋,吴艳宏,李娜,等. 贡嘎山酸性土壤微生物量磷紧密关联碳酸氢钠提取态有机磷[J]. 山地学报,2017,35(5):709—716.]
    [61] Vitousek P M,Chadwick O A,Crews T E,et al. Soil and ecosystem development across the Hawaiian Islands[J]. GSA Today,1997,7:1–8.
    [62] Baumann K,Siebers M,Kruse J,et al. Biological soil crusts as key player in biogeochemical P cycling during pedogenesis of sandy substrate[J]. Geoderma,2019,338:145—158.
    [63] Yang Z J,Bing H J,Zhou J,et al. Variation of mineral composition along the soil chronosequence at the Hailuogou Glacier foreland of Gongga Mountain[J]. Acta Pedologica Sinica,2015,52(3):507—516.[杨子江,邴海健,周俊,等. 贡嘎山海螺沟冰川退缩区土壤序列矿物组成变化[J]. 土壤学报,2015,52(3):507—516.]
    [64] Devau N,Cadre E L,Hinsinger P,et al. Soil pH controls the environmental availability of phosphorus:Experimental and mechanistic modelling approaches[J]. Applied Geochemistry,2009,24(11):2163—2174.
    [65] Yan Y P,Wang X M,Liu F,et al. Progress in researches on interactions between organic phosphates and soil minerals and their environmental impacts[J]. Acta Pedologica Sinica,2019,56(6):1290—1299.[严玉鹏,王小明,刘凡,等. 有机磷与土壤矿物相互作用及其环境效应研究进展[J]. 土壤学报,2019,56(6):1290—1299.]
    [66] Ruttenberg K C,Sulak D J. Sorption and desorption of dissolved organic phosphorus onto iron(oxyhydr)oxides in seawater[J]. Geochimica et Cosmochimica Acta,2011,75(15):4095—4112.
    [67] Yan Y P,Liu F Jr,Li W,et al. Sorption and desorption characteristics of organic phosphates of different structures on aluminium(oxyhydr)oxides[J]. European Journal of Soil Science,2014,65(2):308—317.
    [68] Miller A J,Schuur E A G,Chadwick O A. Redox control of phosphorus pools in Hawaiian montane forest soils[J]. Geoderma,2001,102(3/4):219—237.
    [69] Gatiboni L C,Schmitt D E,Tiecher T,et al. Plant uptake of legacy phosphorus from soils without P fertilization[J]. Nutrient Cycling in Agroecosystems,2021,119(1):139—151.
    [70] ouhami D,McDowell R W,Condron L M. Role of organic anions and phosphatase enzymes in phosphorus acquisition in the rhizospheres of legumes and grasses grown in a low phosphorus pasture soil[J]. Plants,2020,9(9):1185.
    [71] Yu X C,Liu Q,Li C J,et al. Rhizospheric processes and high substrate concentration stimulating mineralization of soil organic P in black earth[J]. Acta Pedologica Sinica,2019,56(4):953—963.[于星辰,刘倩,李春杰,等. 根际过程和高底物浓度促进黑土有机磷矿化[J]. 土壤学报,2019,56(4):953—963.]
    [72] Andrino A,Guggenberger G,Sauheitl L,et al. Carbon investment into mobilization of mineral and organic phosphorus by arbuscular mycorrhiza[J]. Biology and Fertility of Soils,2021,57(1):47—64.
    [73] Achat D L,Bakker M R,Zeller B,et al. Long-term organic phosphorus mineralization in Spodosols under forests and its relation to carbon and nitrogen mineralization[J]. Soil Bi???????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

罗原骏,黄来明,袁大刚.基于31P NMR的自然成土过程中有机磷组分演变特征及影响因素研究进展[J].土壤学报,2023,60(1):23-38. DOI:10.11766/trxb202105060240 LUO Yuanjun, HUANG Laiming, YUAN Dagang. Research Progress of the Evolution Trends and Controls of Soil Organic Phosphorus Speciation during Natural Pedogenesis Based on Solution 31P Nuclear Magnetic Resonance[J]. Acta Pedologica Sinica,2023,60(1):23-38.

复制
分享
文章指标
  • 点击次数:821
  • 下载次数: 2132
  • HTML阅读次数: 1979
  • 引用次数: 0
历史
  • 收稿日期:2021-05-06
  • 最后修改日期:2021-09-02
  • 录用日期:2021-10-13
  • 在线发布日期: 2021-10-14
文章二维码