土壤酶对重金属污染的响应及指示研究进展
作者:
中图分类号:

S154.2

基金项目:

广州市科技计划项目(202102080431)和南方海洋科学与工程广东省实验室(广州)人才团队引进重大专项项目(GML2019ZD0408)共同资助


Research Progresses on Soil Enzymes as Indicators of Soil Health and Their Responses to Heavy Metal Pollution
Author:
Fund Project:

Supported by the Science and Technology Program of Guangzhou City of China (No. 202102080431) and the Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)(No. GML2019ZD0408)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [92]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    土壤酶在关键元素生物地球化学循环、动植物健康维持、环境污染净化等方面起着不可替代的重要作用,同时还是土壤污染程度评价的辅助指标之一。然而,由于土壤物理、化学和生物学性质的差异,以及研究方法的多样化,导致重金属与土壤酶活性之间的关系十分复杂,阻碍了土壤酶在土壤质量和健康评价中的应用。系统阐述了重金属污染对土壤酶的生态毒理效应,及其对土壤酶催化动力学特征的影响,构建了土壤-重金属-微生物对土壤酶作用的概念模型,并探讨未来的研究趋势和方向。土壤酶活性测定高效、便宜,且对重金属污染敏感,是极具潜力的土壤重金属污染评价的生物学指标,但仅采用土壤酶活性可能高估或低估重金属的生态毒性,加之当前对土壤酶的选择、活性的测定均缺乏统一的标准,致使难以建立重金属毒性阈值与土壤理化性质或土壤重金属有效性之间的定量关系,最终导致土壤酶在土壤污染生态风险评价中存在争议。未来亟需通过新技术和数学模型,深入揭示不同类型土壤中酶对重金属胁迫的响应机理,构建土壤性质与毒性阈值关系的经验模型,可为加强土壤酶在土壤质量和健康评价中的应用提供重要的理论依据。

    Abstract:

    Soil enzymes play a vital role in the biogeochemical cycling of key elements, maintenance of animal and plant health, and decontamination of environmental pollution. The activities of soil enzymes can be applied in the environmental risk assessment of soil heavy metal pollution. However, the effects of heavy metals on soil enzyme activities varied with soil physicochemical and biological properties and the differences of research methods. Thus, these factors hinder the application of soil enzymes in the assessment of soil health and quality. This study systematically elaborates the eco-toxicological effects of heavy metal pollution on soil enzyme activities and the kinetic characteristics of soil enzyme catalytic reactions. We also constructed a conceptual diagram of soil enzymes in response to soil-heavy metals-microorganisms, proposed and discussed the future trends and directions in soil enzyme in the assessment of heavy metal pollution. Soil enzymes are potential biological indexes for the evaluation of soil heavy metal pollution, because the determination of soil enzyme activity is efficient and cheap, and soil enzyme activity is sensitive to heavy metal toxicity. However, soil enzyme activity may overestimate or underestimate the ecological toxicity of heavy metals as an individual indicator. Furthermore, there is no uniform standard on how to select soil enzyme as a general indicator to assess the toxicity of heavy metals in different soils. Also, it is difficult to establish a quantitative relationship between the ecological doses of heavy metals for soil enzyme activity and soil properties, which led to the arguments about its accuracy and applicability in the ecological risk of heavy metal pollution. Therefore, it is crucial to use new technologies and methods to uncover the reactive mechanisms of enzymes to heavy metal toxicity in different types of soils, and quantitatively analyze the relationship between soil properties and ecological doses of heavy metals based on kinetic parameters. This can strengthen the practical application of soil enzymes in the diagnosis of soil pollution by heavy metals.

    参考文献
    [1] Zhao F J,Ma Y B,Zhu Y G,et al. Soil contamination in China:Current status and mitigation strategies[J]. Environmental Science & Technology,2015,49(2):750—759.
    [2] Zeng X B,Xu J M,Huang Q Y,et al. Some deliberations on the issues of heavy metals in farmlands of China[J]. Acta Pedologica Sinica,2013,50(1):186—194.[曾希柏,徐建明,黄巧云,等. 中国农田重金属问题的若干思考[J]. 土壤学报,2013,50(1):186—194.]
    [3] Luo L,Ma Y B,Zhang S Z,et al. An inventory of trace element inputs to agricultural soils in China[J]. Journal of Environmental Management,2009,90(8):2524—2530.
    [4] Ministry of Ecology and Environment of the People's Republic of China. Soil environmental quality risk control standard for soil contamination of agricultural land:GB 15618-2018[S]. Beijing:China Environmental Science Press,2018.[生态环境部. 土壤环境质量 农用地土壤污染风险管控标准(试行):GB 15618-2018[S]. 北京:中国环境出版社,2018.]
    [5] Srivastava V,Sarkar A,Singh S,et al. Agroecological responses of heavy metal pollution with special emphasis on soil health and plant performances[J]. Frontiers in Environmental Science,2017,5:Article 64.
    [6] Zhang T L,Wang X X. Prevention and remediation of soil contamination to strengthen the foundation for green and high-quality agricultural development in China[J]. Acta Pedologica Sinica,2019,56(2):251—258.[张桃林,王兴祥. 推进土壤污染防控与修复 厚植农业高质量发展根基[J]. 土壤学报,2019,56(2):251—258.]
    [7] Luo Y M,Teng Y. Research progresses and prospects on soil pollution and remediation in China[J]. Acta Pedologica Sinica,2020,57(5):1137—1142.[骆永明,滕应. 中国土壤污染与修复科技研究进展和展望[J]. 土壤学报,2020,57(5):1137—1142.]
    [8] Zhu Y G,Peng J J,Wei Z,et al. Linking the soil microbiome to soil health[J]. Scientia Sinica Vitae,2021,51(1):1—11.[朱永官,彭静静,韦中,等. 土壤微生物组与土壤健康[J]. 中国科学:生命科学,2021,51(1):1—11.]
    [9] Burns R G,DeForest J L,Marxsen J,et al. Soil enzymes in a changing environment:Current knowledge and future directions[J]. Soil Biology and Biochemistry,2013,58:216—234.
    [10] Rao M A,Scelza R,Acevedo F,et al. Enzymes as useful tools for environmental purposes[J]. Chemosphere,2014,107:145—162.
    [11] Zhou Q X,Wang M E. Researching advancement and prospect of soil ecotoxicology[J]. Asian Journal of Ecotoxicology,2006,1(1):1—11.[周启星,王美娥. 土壤生态毒理学研究进展与展望[J]. 生态毒理学报,2006,1(1):1—11.]
    [12] He W X,Chen H M,Feng G Y,et al. Study on enzyme index in soils polluted by mercury,chromium and arsenic[J]. Acta Scientiae Circumstantiae,2000,20(3):338—343.[和文祥,陈会明,冯贵颖,等. 汞铬砷元素污染土壤的酶监测研究[J]. 环境科学学报,2000,20(3):338—343.]
    [13] Vig K,Megharaj M,Sethunathan N,et al. Bioavailability and toxicity of cadmium to microorganisms and their activities in soil:A review[J]. Advances in Environmental Research,2003,8(1):121—135.
    [14] Speir T W,Kettles H A,Parshotam A,et al. A simple kinetic approach to derive the ecological dose value,ED50,for the assessment of Cr(VI)toxicity to soil biological properties[J]. Soil Biology and Biochemistry,1995,27(6):801—810.
    [15] Moreno J L,Garcı́a C,Landi L,et al. The ecological dose value(ED50)for assessing cd toxicity on ATP content and dehydrogenase and urease activities of soil[J]. Soil Biology and Biochemistry,2001,33(4/5):483—489.
    [16] Welp G. Inhibitory effects of the total and water-soluble concentrations of nine different metals on the dehydrogenase activity of a loess soil[J]. Biology and Fertility of Soils,1999,30(1/2):132—139.
    [17] Fan D W,Wang S Y,Guo Y H,et al. The role of bacterial communities in shaping cd-induced hormesis in 'living' soil as a function of land-use change[J]. Journal of Hazardous Materials,2021,409:124996.
    [18] Tian H X,Kong L,Megharaj M,et al. Contribution of attendant anions on cadmium toxicity to soil enzymes[J]. Chemosphere,2017,187:19—26.
    [19] Deng S P,Tabatabai M A. Cellulase activity of soils:Effect of trace elements[J]. Soil Biology and Biochemistry,1995,27(7):977—979.
    [20] Vasileiadis S,Brunetti G,Marzouk E,et al. Silver toxicity thresholds for multiple soil microbial biomarkers[J]. Environmental Science & Technology,2018,52(15):8745—8755.
    [21] Li T,Lai H X,He W X,et al. Effects of Cr6+ on soil enzyme activity[J]. Journal of Northwest A&F University(Natural Science Edition),2012,40(8):171—178.[李天,来航线,和文祥,等. Cr6+的土壤酶效应研究[J]. 西北农林科技大学学报(自然科学版),2012,40(8):171—178.]
    [22] Lu G N,Xia M J,Jia D Y,et al. Response of mercury stress on soil urease and dehydrogenase activities in 14 major soil types in China[J]. Acta Scientiae Circumstantiae,2014,34(7):1788—1793.[卢冠男,夏梦洁,贾丹阳,等. 我国14种典型土壤脲酶、脱氢酶活性对汞胁迫的响应[J]. 环境科学学报,2014,34(7):1788—1793.]
    [23] Zhang G Q,He W X,Lv J L,et al. Effects of Cr3+ on soil enzyme activity[J]. Journal of Northwest A&F University(Natural Science Edition),2014,42(3):131-136+144.[张国庆,和文祥,吕家珑,等. Cr3+对土壤酶活性的影响[J]. 西北农林科技大学学报(自然科学版),2014,42(3):131-136+144.]
    [24] Tan X P,Kong L,Yan H R,et al. Influence of soil factors on the soil enzyme inhibition by Cd[J]. Acta Agriculturae Scandinavica,Section B — Soil & Plant Science,2014,64(8):666—674.
    [25] Welp G,Brümmer G W. Microbial toxicity of Cd and Hg in different soils related to total and water-soluble contents[J]. Ecotoxicology and Environmental Safety,1997,38(3):200—204.
    [26] He W X,Zhu M E,Zhang Y P. Recent advance in relationship between soil enzymes and heavy metals[J]. Soil and Environmental Sciences,2000,9(2):139—142.[和文祥,朱铭莪,张一平. 土壤酶与重金属关系的研究现状[J]. 土壤与环境,2000,9(2):139—142.]
    [27] Han J G,Wang S Y,Fan D W,et al. Time-dependent hormetic response of soil alkaline phosphatase induced by Cd and the association with bacterial community composition[J]. Microbial Ecology,2019,78(4):961—973.
    [28] Moreno J L,García C,Hernández T. Toxic effect of cadmium and nickel on soil enzymes and the influence of adding sewage sludge[J]. European Journal of Soil Science,2003,54(2):377—386.
    [29] Doelman P,Haanstra L. Short- and long-term effects of heavy metals on urease activity in soils[J]. Biology and Fertility of Soils,1986,2(4):213—218.
    [30] Tan X P,Wang Z Q,Zhang J,et al. Main factors affecting the toxicity of Cd by soil nitrification activity[J]. Acta Scientiae Circumstantiae,2016,36(7):2624—2630.[谭向平,王紫泉,张晶,等. Cd对我国不同类型土壤硝化活性影响的主控因子研究[J]. 环境科学学报,2016,36(7):2624—2630.]
    [31] Doelman P,Haanstra L. Short- and long-term effects of heavy metals on phosphatase activity in soils:An ecological dose-response model approach[J]. Biology and Fertility of Soils,1989,8(3):235—241.
    [32] Renella G,Ortigoza A L R,Landi L,et al. Additive effects of copper and zinc on cadmium toxicity on phosphatase activities and ATP content of soil as estimated by the ecological dose(ED50)[J]. Soil Biology and Biochemistry,2003,35(9):1203—1210.
    [33] Haanstra L,Doelman P. An ecological dose-response model approach to short- and long-term effects of heavy metals on arylsulphatase activity in soil[J]. Biology and Fertility of Soils,1991,11(1):18—23.
    [34] Gao Y,Mao L,Miao C Y,et al. Spatial characteristics of soil enzyme activities and microbial community structure under different land uses in Chongming Island,China:Geostatistical modelling and PCR-RAPD method[J]. Science of the Total Environment,2010,408(16):3251—3260.
    [35] Tan X P,Liu Y J,Yan K H,et al. Differences in the response of soil dehydrogenase activity to Cd contamination are determined by the different substrates used for its determination[J]. Chemosphere,2017,169:324—332.
    [36] Zhu M E. Kinetics and thermodynamics of soil enzyme[M]. Beijing:Science Press,2011.[朱铭莪. 土壤酶动力学及热力学[M]. 北京:科学出版社,2011.]
    [37] Cornish-Bowden A. Fundamentals of enzyme kinetics(4th)[M]. Weinheim:Wiley-Blackwell,2012.
    [38] Wang Z Q,Tian H X,Lu G N,et al. Catalytic efficiency is a better predictor of arsenic toxicity to soil alkaline phosphatase[J]. Ecotoxicology and Environmental Safety,2018,148:721—728.
    [39] He W X,Wang J,Tian H X,et al. Effect of trivalent chromium on soil urease activity characteristics[J]. Journal of Agro-Environment Science,2009,28(11):2343—2347.[和文祥,王娟,田海霞,等. Cr3+对土壤脲酶活性特征的影响[J]. 农业环境科学学报,2009,28(11):2343—2347.]
    [40] Feng D,Wang J S,Teng Y G. Effects of Cu pollution on soil alkaline phosphatase activity[J]. Journal of Beijing Normal University(Natural Science),2015,51(1):69—74.[冯丹,王金生,滕彦国. 重金属Cu对土壤碱性磷酸酶活性的影响[J]. 北京师范大学学报(自然科学版),2015,51(1):69—74]
    [41] He W X,Wei G H,Wu Y J,et al. Soil enzyme activity effected by Hg[J]. China Environmental Science. 2001,21(3):279—283.[和文祥,韦革宏,武永军,等. 汞对土壤酶活性的影响[J]. 中国环境科学,2001,21(3):279—283.]
    [42] Tan X P,Wang Z Q,Lu G N,et al. Kinetics of soil dehydrogenase in response to exogenous Cd toxicity[J]. Journal of Hazardous Materials,2017,329:299—309.
    [43] Fan D W,Xu S,Zhou M L,et al. Low-dose hormetic effects of Cd2+ and Cr3+ on alkaline phosphatase in wetland soil in Dongtan of Chongming[J]. Journal of Ecology and Rural Environment,2016,32(2):320—325.[范弟武,徐莎,周曼丽,等. Cd2+和Cr3+对崇明东滩湿地土壤碱性磷酸酶的低剂量兴奋效应[J]. 生态与农村环境学报,2016,32(2):320—325.]
    [44] Yang C L,Sun T H,He W X,et al. Kinetics of soil urease inhibited by Hg[J]. Journal of Liaoning Technical University(Natural Science),2008,27(3):454—457.[杨春璐,孙铁珩,和文祥,等. 汞对土壤脲酶的抑制动力学研究[J]. 辽宁工程技术大学学报(自然科学版),2008,27(3):454—457.]
    [45] He W X,Wang J,Gao Y J,et al. Effect of different valences chromium on soil alk-phosphatase characteristics[J]. Journal of Agro-Environment Science. 2010,29(1):104—109.[和文祥,王娟,高亚军,等. 不同价态铬的土壤碱性磷酸酶效应模拟研究[J]. 农业环境科学学报,2010,29(1):104—109.]
    [46] Song J W,Shen Q L,Wang L,et al. Effects of Cd,Cu,Zn and their combined action on microbial biomass and bacterial community structure[J]. Environmental Pollution,2018,243:510—518.
    [47] Martín-Sanz J P,Valverde-Asenjo I,de Santiago-Martín A,et al. Enzyme activity indicates soil functionality affectation with low levels of trace elements[J]. Environmental Pollution,2018,243:1861—1866.
    [48] Ameen F,Alsamhary K,Alabdullatif J A,et al. A review on metal-based nanoparticles and their toxicity to beneficial soil bacteria and fungi[J]. Ecotoxicology and Environmental Safety,2021,213:112027.
    [49] Sun W M,Xiao E Z,Xiao T F,et al. Response of soil microbial communities to elevated antimony and arsenic contamination indicates the relationship between the innate microbiota and contaminant fractions[J]. Environmental Science & Technology,2017,51(16):9165—9175.
    [50] Xiao E Z,Ning Z P,Sun W M,et al. Thallium shifts the bacterial and fungal community structures in thallium mine waste rocks[J]. Environmental Pollution,2021,268:115834.
    [51] Tan X P,Machmuller M B,Wang Z Q,et al. Temperature enhances the affinity of soil alkaline phosphatase to Cd[J]. Chemosphere,2018,196:214—222.
    [52] Yang C L,Sun T H,He W X,et al. Effect of temperature on kinetic of soil urease inhibited by Hg[J]. Environmental Science,2007,28(2):278—282.[杨春璐,孙铁珩,和文祥,等. 温度对汞抑制土壤脲酶动力学影响研究[J]. 环境科学,2007,28(2):278—282]
    [53] Huang Q Y,Shindo H. Effects of copper on the activity and kinetics of free and immobilized acid phosphatase[J]. Soil Biology and Biochemistry,2000,32(13):1885—1892.
    [54] Tian H X,Zhao Y M,Megharaj M,et al. Arsenate inhibition on kinetic characteristics of alkaline phosphatase as influenced by pH[J]. Ecological Indicators,2018,85:1101—1106.
    [55] He W X,Zhu M E,Zhang Y P. Effect of pH on relationship between soil urease activity and Hg and Cd[J]. Journal of Northwest A&F University(Natural Science Edition),2002,30(3):66—70.[和文祥,朱铭莪,张一平. pH对汞镉与土壤脲酶活性关系的影响[J]. 西北农林科技大学学报(自然科学版),2002,30(3):66—70.]
    [56] Huang Q Y,Shindo H. Inhibition of free and immobilized acid phosphatase by zinc[J]. Soil Science,2000,165(10):793—802.
    [57] He W X,Zhu M E,Zhang Y P. Study on the effects of Hg and Cd on soil urease activity I:Urea concentration[J]. Chinese Journal of Applied Ecology,2002,13(2):191—193.[和文祥,朱铭莪,张一平. 汞、镉对土壤脲酶活性影响的研究I.尿素浓度[J]. 应用生态学报,2002,13(2):191—193.]
    [58] He W X,Chen H M,Zhu M E. Effects of Hg and Cd on free and immobilized urease activity[J]. Acta Pedologica Sinica,2003,40(6):945—951.[和文祥,陈会明,朱铭莪. 汞镉对游离和固定化脲酶活性的影响[J]. 土壤学报,2003,40(6):945—951.]
    [59] Liu Y,Tan X P,Wang Y Y,et al. Responses of litter,organic and mineral soil enzyme kinetics to 6 years of canopy and understory nitrogen additions in a temperate forest[J]. Science of the Total Environment,2020,712:136383.
    [60] Davidson E A,Janssens I A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change[J]. Nature,2006,440(7081):165—173.
    [61] Ciarkowska K. Enzyme activities in soils contaminated with heavy metals in varying degrees//Sherameti I,Varma A. Heavy metal contamination of soils[M]. Cham:Springer International Publishing,2015:145—158.
    [62] Xie W,Tan X P,Tian H X,et al. Effects of soil moisture on available arsenic and alkaline phosphatase activity in paddy soil[J]. China Environmental Science,2016,36(8):2418—2424.[谢伟,谭向平,田海霞,等. 土壤水分对稻田土壤有效砷及碱性磷酸酶活性影响[J]. 中国环境科学,2016,36(8):2418—2424.]
    [63] Xie W,He W X,Wang Z Q,et al. Kinetic characteristics of soil alkaline phosphatase inhibited by arsenic based on changes of soil moisture[J]. Acta Scientiae Circumstantiae,2016,36(5):1816—1823.[谢伟,和文祥,王紫泉,等. 基于水分变化的砷抑制土壤碱性磷酸酶动力学特征研究[J]. 环境科学学报,2016,36(5):1816—1823.]
    [64] Zimmerman A R,Ahn M-Y. Organo-mineral–enzyme interaction and soil enzyme activity//Shukla G,Varma A. Soil enzymology[M]. Berlin:Springer Berlin Heidelberg,2011:271—292
    [65] Andersen A,Reardon P N,Chacon S S,et al. Protein–mineral interactions:Molecular dynamics simulations capture importance of variations in mineral surface composition and structure[J]. Langmuir,2016,32(24):6194—6209.
    [66] Li Y,Tan W F,Koopal L K,et al. Influence of soil humic and fulvic acid on the activity and stability of lysozyme and urease[J]. Environmental Science & Technology,2013,47(10):5050—5056.
    [67] Rao M A,Violante A,Gianfreda L. Interaction of acid phosphatase with clays,organic molecules and organo-mineral complexes:Kinetics and stability[J]. Soil Biology and Biochemistry,2000,32(7):1007—1014.
    [68] Gianfreda L,De Cristofaro A,Rao M A,et al. Kinetic behavior of synthetic organo- and organo-mineral-urease complexes[J]. Soil Science Society of America Journal,1995,59(3):811—811.
    [69] Wang Z Q,Li Y B,Tan X P,et al. Effect of arsenate contamination on free,immobilized and soil alkaline phosphatases:Activity,kinetics and thermodynamics[J]. European Journal of Soil Science,2017,68(1):126—135.
    [70] Huang Q Y,Shindo H. Contparison of the influence of Cu,Zn,and Cd on the activity and kinetics of free and intntobilized acid phosphatase[J]. Soil Science and Plant Nutrition,2001,47(4):767—772.
    [71] Staunton S,Razzouk R,Abadie J,et al. Water-extractable soil organic matter inhibits phosphatase activity[J]. Soil Biology and Biochemistry,2012,55:14—16.
    [72] Trasar-Cepeda C,Gil-Sotres F,Bello D. Use of enzyme activities to monitor pollution of agricultural land[J]. EQA-International Journal of Environmental Quality,2016,22:15—24.
    [73] Lessard I,Sauvé S,Deschênes L. Toxicity response of a new enzyme-based functional diversity methodology for Zn-contaminated field-collected soils[J]. Soil Biology and Biochemistry,2014,71:87—94.
    [74] Puglisi E,Del Re A A M,Rao M A,et al. Development and validation of numerical indexes integrating enzyme activities of soils[J]. Soil Biology and Biochemistry,2006,38(7):1673—1681.
    [75] He W X,Tan X P,Wang X D,et al. Study on total enzyme activity index in soils[J]. Acta Pedologica Sinica,2010,47(6):1232—1236.[和文祥,谭向平,王旭东,等. 土壤总体酶活性指标的初步研究[J]. 土壤学报,2010,47(6):1232—1236.]
    [76] Cui Y X,Wang X,Wang X X,et al. Evaluation methods of heavy metal pollution in soils based on enzyme activities:A review[J]. Soil Ecology Letters,2021,3(3):169—177.
    [77] Larras F,Bouchez A,Rimet F,et al. Using bioassays and species sensitivity distributions to assess herbicide toxicity towards benthic diatoms[J]. PLoS One,2012,7(8):e44458.
    [78] Xian Y,Wang M E,Chen W P. Quantitative assessment on soil enzyme activities of heavy metal contaminated soils with various soil properties[J]. Chemosphere,2015,139:604—608.
    [79] Wang X Q,Wei D P,Ma Y B,et al. Derivation of soil ecological criteria for copper in Chinese soils[J]. PLoS ONE,2015,10(7):e0133941.
    [80] Posthuma L,Suter II G W,Traas T P. Species sensitivity distribution in ecotoxicology[M]. Boca Raton:CRC Press,2001.
    [81] Ding C F,Zhang T L,Li X B,et al. Major controlling factors and prediction models for mercury transfer from soil to carrot[J]. Journal of Soils and Sediments,2014,14(6):1136—1146.
    [82] Li Z J,Yang H,Li Y P,et al. Cross-species extrapolation of prediction model for lead transfer from soil to corn grain under stress of exogenous lead[J]. PLoS One,2014,9(1):e85688.
    [83] Eisenthal R,Danson M J,Hough D W. Catalytic efficiency and kcat/Km:A useful comparator[J]. Trends in Biotechnology,2007,25(6):247—249.
    [84] Wang Z Q,Tian H,Lei M X,et al. Soil enzyme kinetics indicate ecotoxicity of long-term arsenic pollution in the soil at field scale[J]. Ecotoxicology and Environmental Safety,2020,191:110215.
    [85] Liu Y R,Delgado-Baquerizo M,Bi L,et al. Consistent responses of soil microbial taxonomic and functional attributes to mercury pollution across China[J]. Microbiome,2018,6(1):183.
    [86] Xu Y L,Seshadri B,Bolan N,et al. Microbial functional diversity and carbon use feedback in soils as affected by heavy metals[J]. Environment International,2019,125:478—488.
    [87] Fang L C,Cao Y Y,Huang Q Y,et al. Reactions between bacterial exopolymers and goethite:A combined macroscopic and spectroscopic investigation[J]. Water Research,2012,46(17):5613—5620.
    [88] Pu S Y,Wang Y,Chen W Y,et al. Review on the mechanism of plant rhizosphere soil enzyme response to heavy metal pollution[J]. Asian Journal of Ecotoxicology,2020,15(4):11—20.[蒲生彦,王宇,陈文英,等. 植物根际土壤酶对重金属污染的响应机制研究综述[J]. 生态毒理学报,2020,15(4):11—20.]
    [89] Buckley S,Allen D,Brackin R,et al. Microdialysis as an in situ technique for sampling soil enzymes[J]. Soil Biology and Biochemistry,2019,135:20—27.
    [90] Martínez D,Molina M J,Sánchez J,et al. API ZYM assay to evaluate enzyme fingerprinting and microbial functional diversity in relation to soil processes[J]. Biology and Fertility of Soils,2016,52(1):77—89.
    [91] Bastida F,Hernández T,García C. Metaproteomics of soils from semiarid environment:Functional and phylogenetic information obtained with different protein extraction methods[J]. Journal of Proteomics,2014,101:31—42.
    [92] Tang J Y,Zhang J C,Ren L H,et al. Diagnosis of soil contamination using microbiological indices:A review on heavy metal pollution[J]. Journal of Environmental Management,2019,242:121—130.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

谭向平,何金红,郭志明,王紫泉,聂彦霞,叶清,和文祥,申卫军.土壤酶对重金属污染的响应及指示研究进展[J].土壤学报,2023,60(1):50-62. DOI:10.11766/trxb202107240275 TAN Xiangping, HE Jinhong, GUO Zhiming, WANG Ziquan, NIE Yanxia, YE Qing, HE Wenxiang, SHEN Weijun. Research Progresses on Soil Enzymes as Indicators of Soil Health and Their Responses to Heavy Metal Pollution[J]. Acta Pedologica Sinica,2023,60(1):50-62.

复制
分享
文章指标
  • 点击次数:773
  • 下载次数: 2718
  • HTML阅读次数: 2102
  • 引用次数: 0
历史
  • 收稿日期:2021-07-24
  • 最后修改日期:2021-09-16
  • 录用日期:2021-11-25
  • 在线发布日期: 2021-11-26
文章二维码