微生物介导的农业土壤氧化亚氮减排研究进展
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

S154.3

基金项目:

国家自然科学基金项目(41771291,31972503)和江苏省大学生创新创业训练计划项目(202010291176Y)资助


Research Progress on Microbial-Mediated Mitigation of Nitrous Oxide Emissions from Agricultural Soils
Author:
Affiliation:

Fund Project:

Supported by the National Natural Science Foundation of China(Nos. 41771291 and 31972503)and the Innovation and Entrepreneurship Training Program for College Students of Jiangsu Province, China (No. 202010291176Y)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    氧化亚氮(N2O)是一种在大气存留时间长且破坏臭氧层的重要温室气体。农业土壤源N2O是其重要来源,具有产生路径广、影响因素多、调控复杂等特点。减少农业土壤N2O排放一直是研究的热点。含有N2O还原酶的N2O还原细菌能将N2O还原为氮气(N2),这是目前已知的微生物还原N2O唯一的汇。直接应用微生物减少农业土壤N2O排放是一种新兴的减排技术。本文详细阐述了农业土壤N2O的生物源与汇,重点论述了N2O减排微生物的筛选及应用策略。综述了微生物介导的农业土壤N2O减排的两种微生物生态学机制:一种是利用含有nosZ基因的N2O还原细菌直接减少N2O排放,另一种是利用能改变N2O还原细菌群落组成和丰度及其活性的植物根际促生菌间接减少N2O排放。最后,讨论了影响微生物介导的农业土壤N2O减排的环境因素及可能存在的问题,并对该技术在减少农业土壤N2O排放中的应用进行展望。本文可为我国实现农业碳中和的战略目标提供重要技术参考。

    Abstract:

    Nitrous oxide(N2O), an important greenhouse gas, has a global warming potential of 265 times higher than that of an equivalent concentration of carbon dioxide. The N2O has a long atmospheric lifetime and does deplete the ozone layer in the stratosphere. Agricultural soil is an important source of N2O, which has a characteristic of diverse generation paths, multiple impact factors, and complicated regulation processes. Mitigation of N2O emissions from agricultural soils has long been the hotspot of research in this field. N2O-reducing bacteria harboring N2O reductase can reduce N2O to dinitrogen(N2), which is the only known sink of N2O consumption as a primary substrate in the biosphere. The direct use of microorganisms to decrease N2O emissions from agricultural soils is an emerging technology. We elaborated on the biological sources and sinks of N2O emissions from agricultural soils in detail, paying special emphasis on the screening and application strategies of microorganisms that can mitigate N2O emissions. There are three strategies for the direct use of microorganisms to decrease N2O emissions from agricultural soils: (1) application of the prepared microbial inoculum directly to the agricultural soil; (2) combination of the prepared microbial inoculum with fertilizers or other carriers before being applied to the soil; (3) construction of the microbial community with N2O mitigation effect, and then direct application to the soil or in combination with a carrier before being applied to the soil. We summarized two ecological mechanisms of microbial-mediated mitigation of N2O emissions from agricultural soils. One mechanism involved employing N2O-reducing bacteria containing nosZ gene to directly convert N2O to N2 in order to mitigate N2O emissions from agricultural soils. The other mechanism utilizes plant growth-promoting rhizobacteria to alter the community composition, abundance and activity of the N2O-reducing bacteria and indirectly mitigate N2O emissions from agricultural soils. We also discussed the environmental factors that affect the reduction of N2O to N2 by directly using microorganisms and the potential challenges. The biological process of reducing N2O to N2 is affected by many environmental factors, including the availability of NO3- and carbon sources, oxygen concentration, moisture content, temperature, pH and copper concentration. Among them, Cu availability and pH are some of the most important factors that determine the activity of N2OR. Several issues need to be addressed in future studies. For example, there are only a limited number of strains that have been screened with N2O mitigating effects. It remains unknown whether the inoculum colonizes roots or survive in the environment after the inoculation. The microbial ecological mechanisms are poorly understood; such as, how the inoculum achieve their beneficial effects in environments. Moreover, we lack effective technical means to regulate the inoculum to fully exploit their beneficial effects. Further, the methods to evaluate N2O mitigating effects also need to be improved. Finally, prospects on the application of microbial-mediated mitigation of N2O emissions from agricultural soils were suggested. The review provides an important technical reference for achieving the agricultural carbon neutrality strategic goal in China.

    参考文献
    相似文献
    引证文献
引用本文

申卫收,熊若男,张欢欢,杨思琪,高南.微生物介导的农业土壤氧化亚氮减排研究进展[J].土壤学报,2023,60(2):332-344. DOI:10.11766/trxb202106170315 SHEN Weishou, XIONG Ruonan, ZHANG Huanhuan, YANG Siqi, GAO Nan. Research Progress on Microbial-Mediated Mitigation of Nitrous Oxide Emissions from Agricultural Soils[J]. Acta Pedologica Sinica,2023,60(2):332-344.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-06-17
  • 最后修改日期:2022-01-13
  • 录用日期:2022-02-28
  • 在线发布日期: 2022-03-01
  • 出版日期: 2023-03-28