东北农田黑土N2O排放研究进展
作者:
中图分类号:

S154.2

基金项目:

国家自然科学基金项目(42077029)、中国科学院国际伙伴计划项目(151432KYSB20200001)和中国科协青年人才托举工程项目(YESS20200124)


N2O Emissions from Black Soils in Northeast China
Author:
Fund Project:

The National Natural Science Foundation of China (42077029) ; International Partnership Program of Chinese Academy of Sciences (151432KYSB2020001) ; Youth Talent Support Project of China Association for Science and Technology (SSSCYESS2019005)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [76]
  • | | | |
  • 文章评论
    摘要:

    农田是温室气体氧化亚氮(N2O)的重要排放源,位于东北地区的黑土地是我国重要的粮食生产基地。目前我国农田N2O排放增速正在放缓,但是东北黑土区仍在加快。针对我国东北黑土区的自身特点和N2O排放研究现状,本文综合分析了黑土N2O排放特征、产生过程与影响因素。结果表明,东北农田黑土N2O-N背景排放量平均为0.56±0.29 kg·hm–2,施用化肥黑土N2O-N平均排放量为1.49±1.09 kg·hm–2,化肥氮诱导的N2O排放系数(EF)为0.45%±0.42%。与中国旱地和世界其他黑土区相比,东北农田黑土的背景排放量和EF均处于较低水平。这是因为在正常降雨条件下,东北黑土N2O主要是由硝化作用产生,反硝化作用受到活性碳缺乏的限制。冻融过程则可能促进反硝化作用进行,诱导春融期N2O出现爆发式排放。与我国其他农田相比,东北黑土N2O排放研究明显不足,今后应加强对不同区域黑土N2O排放的原位观测,阐明冻融过程N2O的产生机制,评估黑土N2O排放对气候变化的响应;同时应加强研究秸秆还田、有机肥施用等措施对N2O排放的影响效应,从而制定出黑土地质量提升和N2O减排的双赢措施。

    Abstract:

    Cropland is an important source of the potent greenhouse gas nitrous oxide(N2O). The cultivated black soils located in Northeast China play a vital role in national grain production. It has been demonstrated that the growth rate of N2O emissions from Chinese croplands is slowing down but still accelerating in the black soil area of Northeast China. Aiming at comprehensively assessing N2O emissions and understanding the production mechanisms, in this study, we summarized and characterized the N2O emission intensity, production processes and influencing factors from the black soils in Northeast China. The results showed that the average N2O-N emissions from unfertilized and inorganic-fertilizer applied black soils were 0.56±0.29 and 1.49±1.09 kg·hm–2, respectively. The inorganic fertilizer-N induced N2O emission factor(EF)was 0.45%±0.42% on average across the black soils in Northeast China. Both the background emissions and the EF values were generally lower compared with those of other uplands in China and black soils in other countries. This was likely due to the limitation of denitrification by labile carbon under normal rainfall conditions, and thus the N2O emissions were predominately derived from nitrification. It was found that the freeze-thaw cycles could greatly promote denitrification and result in large pulses of N2O fluxes during spring thaw, which might dominate the annual emissions. Compared with croplands in other regions of China, studies on the N2O emissions from black soils in Northeast China are largely limited. In future research, the in-situ observations of N2O emissions from black soils in different regions of Northeast China should be strengthened, and the mechanisms involved in freeze-thaw induced N2O emissions should be clarified. This will facilitate the evaluation of the response of N2O emissions from black soils to global climate change. Also, there is a need to strengthen researches on the effects of crop residue returning, manure application, etc. on N2O emissions, to facilitate the development of win-win strategies for enhancing soil quality and simultaneously reduce N2O emissions from black soils.

    参考文献
    [1] Thomson A J,Giannopoulos G,Pretty J,et al. Biological sources and sinks of nitrous oxide and strategies to mitigate emissions[J]. Philosophical Transactions of the Royal Society of London Series B,Biological Sciences,2012,367(1593):1157—1168.
    [2] Stocker F S,Qin D H,Plattner G K,et al. Climate change 2013:The physical science basis//Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[C]. Cambridge:Cambridge University Press,2013.
    [3] Davidson E A. The contribution of manure and fertilizer nitrogen to atmospheric nitrous oxide since 1860[J]. Nature Geoscience,2009,2(9):659—662.
    [4] Tian H Q,Yang J,Xu R T,et al. Global soil nitrous oxide emissions since the preindustrial era estimated by an ensemble of terrestrial biosphere models:Magnitude,attribution,and uncertainty[J]. Global Change Biology,2019,25(2):640—659.
    [5] Stehfest E,Bouwman L. N2O and NO emission from agricultural fields and soils under natural vegetation:Summarizing available measurement data and modeling of global annual emissions[J]. Nutrient Cycling in Agroecosystems,2006,74(3):207—228.
    [6] Han X Z,Zou W X. Research perspectives and footprint of utilization and protection of black soil in Northeast China[J]. Acta Pedologica Sinica,2021,58(6):1341—1358.[韩晓增,邹文秀.东北黑土地保护利用研究足迹与科技研发展望[J].土壤学报,2021,58(6):1341—1358.]
    [7] Wang J K,Li S Y,Zhang X D,et al. Spatial and temporal variability of soil quality in typical black soil area in Northeast China in 20 years[J]. Chinese Journal of Eco-Agriculture,2007,15(1):19—24.[汪景宽,李双异,张旭东,等. 20年来东北典型黑土地区土壤肥力质量变化[J].中国生态农业学报,2007,15(1):19—24.]
    [8] Han X Z,Li N. Research progress of black soil in northeast China[J]. Scientia Geographica Sinica,2018,38(7):1032—1041.[韩晓增,李娜.中国东北黑土地研究进展与展望[J].地理科学,2018,38(7):1032—1041.]
    [9] Shang Z Y,Zhou F,Smith P,et al. Weakened growth of cropland-N2O emissions in China associated with nationwide policy interventions[J]. Global Change Biology,2019,25(11):3706—3719.
    [10] Chen Z M,Ding W X,Luo Y Q,et al. Nitrous oxide emissions from cultivated black soil:A case study in Northeast China and global estimates using empirical model[J]. Global Biogeochemical Cycles,2014,28(11):1311—1326.
    [11] Yue Q,Wu H,Sun J F,et al. Deriving emission factors and estimating direct nitrous oxide emissions for crop cultivation in China[J]. Environmental Science & Technology,2019,53(17):10246—10257.
    [12] Guenet B,Gabrielle B,Chenu C,et al. Can N2O emissions offset the benefits from soil organic carbon storage?[J]. Global Change Biology,2021,27(2):237—256.
    [13] Li L J,Han X Z,You M Y,et al. Nitrous oxide emissions from Mollisols as affected by long-term applications of organic amendments and chemical fertilizers[J]. Science of the Total Environment,2013,452/453:302—308.
    [14] Qiao Y F,Miao S J,Han X Z,et al. The effect of fertilizer practices on N balance and global warming potential of maize-soybean-wheat rotations in Northeastern China[J]. Field Crops Research,2014,161:98—106.
    [15] Ni K,Ding W X,Zaman M,et al. Nitrous oxide emissions from a rainfed-cultivated black soil in Northeast China:effect of fertilization and maize crop[J]. Biology and Fertility of Soils,2012,48(8):973—979.
    [16] Guo Y L,Luo L G,Chen G X,et al. Mitigating nitrous oxide emissions from a maize-cropping black soil in Northeast China by a combination of reducing chemical N fertilizer application and applying manure in autumn[J]. Soil Science & Plant Nutrition,2013,59(3):392—402.
    [17] Hao X Y,Zhou B K,Ma X Z,et al. Effects of nitrogen fertilizer management on greenhouse gas emissions from maize field in black soil[J]. China Environmental Science,2015,35(11):3227—3238.[郝小雨,周宝库,马星竹,等.氮肥管理措施对黑土玉米田温室气体排放的影响[J].中国环境科学,2015,35(11):3227—3238.]
    [18] Ding H,Wang Y S. Denitrification losses of nitrogen fertilizer and N2O emission from different crop-black soil systems in North-East China[J]. Journal of Agro-Environmental Science,2004,23(2):323—326.[丁洪,王跃思.东北黑土区不同作物系统氮肥反硝化损失与N2O排放量[J].农业环境科学学报,2004,23(2):323—326.]
    [19] Zheng Y,Tang S M,Li Y Y,et al. Effects of controlled release urea on maize yield and apparent N recovery rates in Heilongjiang Province[J]. Journal of Maize Sciences,2014,22(1):127—131.[郑雨,唐树梅,李玉影,等.控释尿素对黑龙江省玉米氮肥利用率及产量的影响[J].玉米科学,2014,22(1):127—131.]
    [20] Wang Y,Yin S Y,Gao Q,et al. Effects of synchronous nutrient fertilizer on spring maize production and environment[J]. Journal of Jilin Agricultural University,2019,41(3):324—329.[王寅,尹释玉,高强,等.同步营养肥在春玉米上的施用效果与环境效应[J].吉林农业大学学报,2019,41(3):324—329.]
    [21] Gao H J,Zhang W J,Peng C,et al. Emission characteristics of greenhouse gas from maize field of black soil region under long-term fertilization[J]. Journal of Agricultural Resources and Environment,2017,34(5):422—430.[高洪军,张卫建,彭畅,等.长期施肥下黑土玉米田土壤温室气体的排放特征[J].农业资源与环境学报,2017,34(5):422—430.]
    [22] Han Y Y,Cao G J,Geng Y H,et al. Effects of agricultural wastes on greenhouse gas emission and global warming potential in black soil[J]. Journal of South China Agricultural University,2017,38(5):36—42.[韩圆圆,曹国军,耿玉辉,等.农业废弃物还田对黑土温室气体排放及全球增温潜势的影响[J].华南农业大学学报,2017,38(5):36—42.]
    [23] Yin Y L,Wang Z H,Tian X S,et al. Evaluation of variation in background nitrous oxide emissions:A new global synthesis integrating the impacts of climate,soil and management conditions[J]. Global Change Biology,2021,https://doi.org/10.1111/gcb.15860.
    [24] Gu J X,Zheng X H,Wang Y H,et al. Regulatory effects of soil properties on background N2O emissions from agricultural soils in China[J]. Plant and Soil,2007,295(1/2):53—65.
    [25] Xu Y X,Guo L P,Xie L Y,et al. Characteristics of background emissions and emission factors of N2O from major upland fields in China[J]. Scientia Agricultura Sinica,2016,49(9):1729—1743.[徐玉秀,郭李萍,谢立勇,等.中国主要旱地农田N2O背景排放量及排放系数特点[J].中国农业科学,2016,49(9):1729—1743.]
    [26] Zhou F,Shang Z Y,Zeng Z Z,et al. New model for capturing the variations of fertilizer-induced emission factors of N2O[J]. Global Biogeochemical Cycles,2015,29(6):885—897.
    [27] Shepherd A,Yan X Y,Nayak D,et al. Disaggregated N2O emission factors in China based on cropping parameters create a robust approach to the IPCC Tier 2 methodology[J]. Atmospheric Environment,2015,122:272—281.
    [28] Xing G X. N2O emission from cropland in China[J]. Nutrient Cycling in Agroecosystems,1998,52(2/3):249—254.
    [29] Aliyu G,Luo J F,Di H J,et al. Nitrous oxide emissions from China's croplands based on regional and crop-specific emission factors deviate from IPCC 2006 estimates[J]. Science of the Total Environment,2019,669(15):547—558.
    [30] Romanovskaya A A. Methane and nitrous oxide emissions in the agricultural sector of Russia[J]. Russian Meteorology and Hydrology,2008,33(2):117—124.
    [31] Nevison C,Andrews A,Thoning K,et al. Nitrous oxide emissions estimated with the CarbonTracker-Lagrange North American regional inversion framework[J]. Global Biogeochemical Cycles,2018,32(3):463—485.
    [32] Rochette P,Worth D E,Lemke R L,et al. Estimation of N2O emissions from agricultural soils in Canada. I. Development of a country-specific methodology[J]. Canadian Journal of Soil Science,2008,88(5):641—654.
    [33] Eggleston S,Buendia L,Miwa K,et al. 2006 IPCC guidelines for national greenhouse gas inventories[M]//Agriculture,forestry and other land use. Hayama:Intergovernmental Panel on Climate Change (IPCC),2006.
    [34] Butterbach-Bahl K,Baggs E M,Dannenmann M,et al. Nitrous oxide emissions from soils:How well do we understand the processes and their controls?[J]. Philosophical Transactions of the Royal Society of London Series B,Biological Sciences,2013,368(1621):20130122.
    [35] Wrage N,Velthof G L,van Beusichem M L,et al. Role of nitrifier denitrification in the production of nitrous oxide[J]. Soil Biology & Biochemistry,2001,33(12/13):1723—1732.
    [36] Müller C,Stevens R J,Laughlin R J. A 15N tracing model to analyse N transformations in old grassland soil[J]. Soil Biology & Biochemistry,2004,36(4):619—632.
    [37] Nelissen V,Rütting T,Huygens D,et al. Maize biochars accelerate short-term soil nitrogen dynamics in a loamy sand soil[J]. Soil Biology & Biochemistry,2012,55:20—27.
    [38] Cai Y J,Ding W X,Zhang X L,et al. Contribution of heterotrophic nitrification to nitrous oxide production in a long-term N-fertilized arable black soil[J]. Communications in Soil Science and Plant Analysis,2010,41(19):2264—2278.
    [39] Chen Z M,Ding W X,Xu Y H,et al. Importance of heterotrophic nitrification and dissimilatory nitrate reduction to ammonium in a cropland soil:Evidences from a 15N tracing study to literature synthesis[J]. Soil Biology & Biochemistry,2015,91:65—75.
    [40] Zhu T B,Meng T Z,Zhang J B,et al. Fungi-dominant heterotrophic nitrification in a subtropical forest soil of China[J]. Journal of Soils and Sediments,2015,15(3):705—709.
    [41] Laughlin R J,Rütting T,Müller C,et al. Effect of acetate on soil respiration,N2O emissions and gross N transformations related to fungi and bacteria in a grassland soil[J]. Applied Soil Ecology,2009,42(1):25—30.
    [42] Zhang J B,Müller C,Cai Z C. Heterotrophic nitrification of organic N and its contribution to nitrous oxide emissions in soils[J]. Soil Biology & Biochemistry,2015,84:199—209.
    [43] Wrage-Mönnig N,Horn M A,Well R,et al. The role of nitrifier denitrification in the production of nitrous oxide revisited[J]. Soil Biology & Biochemistry,2018,123:A3—A16.
    [44] Medinets S,Skiba U,Rennenberg H,et al. A review of soil NO transformation:Associated processes and possible physiological significance on organisms[J]. Soil Biology & Biochemistry,2015,80:92—117.
    [45] Chen Z M,Ding W X,Xu Y H,et al. Increased N2O emissions during soil drying after waterlogging and spring thaw in a record wet year[J]. Soil Biology & Biochemistry,2016,101:152—164.
    [46] Shang Z Y,Abdalla M,Kuhnert M,et al. Measurement of N2O emissions over the whole year is necessary for estimating reliable emission factors[J]. Environmental Pollution,2020,259:113864.
    [47] Wang F,Chen S,Yang H H,et al. Effect of glucose addition on N2O emission from three types of cultivated soils under ambient and freezing temperature[J]. Ecological Science,2017,36(3):31—35.[王风,陈思,杨厚花,等.葡萄糖添加对室温和冻结过程土壤N2O排放特征影响[J].生态科学,2017,36(3):31—35.]
    [48] Chen S,Zhang K Q,Ma X Y,et al. Effects of nitrate nitrogen application on N2O emissions from three types of soil during freezing process[J]. Research of Environmental Sciences,2014,27(6):635—641.[陈思,张克强,麻晓越,等.外源硝态氮对典型耕作土壤冻结过程N2O排放的影响[J].环境科学研究,2014,27(6):635—641.]
    [49] Bouwman A F,Boumans L J M,Batjes N H. Emissions of N2O and NO from fertilized fields:Summary of available measurement data[J]. Global Biogeochemical Cycles,2002,16(4):6—1—6—13.
    [50] Putz M,Schleusner P,Rütting T,et al. Relative abundance of denitrifying and DNRA bacteria and their activity determine nitrogen retention or loss in agricultural soil[J]. Soil Biology & Biochemistry,2018,123:97—104.
    [51] Friedl J,De Rosa D,Rowlings D W,et al. Dissimilatory nitrate reduction to ammonium (DNRA),not denitrification dominates nitrate reduction in subtropical pasture soils upon rewetting[J]. Soil Biology & Biochemistry,2018,125:340—349.
    [52] Minick K J,Pandey C B,Fox T R,et al. Dissimilatory nitrate reduction to ammonium and N2O flux:Effect of soil redox potential and N fertilization in loblolly pine forests[J]. Biology and Fertility of Soils,2016,52(5):601—614.
    [53] Pandey C B,Kumar U,Kaviraj M,et al. DNRA:A short-circuit in biological N-cycling to conserve nitrogen in terrestrial ecosystems[J]. Science of the Total Environment,2020,738:139710.
    [54] Subbarao G V,Ito O,Sahrawat K L,et al. Scope and strategies for regulation of nitrification in agricultural systems—challenges and opportunities[J]. Critical Reviews in Plant Sciences,2006,25(4):303—335.
    [55] Cai Y J,Ding W X,Luo J F. Nitrous oxide emissions from Chinese maize-wheat rotation systems:A 3-year field measurement[J]. Atmospheric Environment,2013,65:112—122.
    [56] Zimov S A,Zimova G M,Daviodov S P,et al. Winter biotic activity and production of CO2 in Siberian soils:A factor in the greenhouse effect[J]. Journal of Geophysical Research:Atmospheres,1993,98(D3):5017—5023.
    [57] Miao S J,Qiao Y F,Han X Z,et al. Frozen cropland soil in Northeast China as source of N2O and CO2 emissions[J]. PLoS One,2014,9(12):e115761.
    [58] Cui P Y,Fan F L,Yin C,et al. Long-term organic and inorganic fertilization alters temperature sensitivity of potential N2O emissions and associated microbes[J]. Soil Biology & Biochemistry,2016,93:131—141.
    [59] Wagner-Riddle C,Congreves K A,Abalos D,et al. Globally important nitrous oxide emissions from croplands induced by freeze–thaw cycles[J]. Nature Geoscience,2017,10(4):279—283.
    [60] Russow R,Stange C F,Neue H U. Role of nitrite and nitric oxide in the processes of nitrification and denitrification in soil:Results from 15N tracer experiments[J]. Soil Biology & Biochemistry,2009,41(4):785—795.
    [61] Shi H A,Li L J,You M Y,et al. Impact of soil temperature and moisture on soil N2O emission from mollisols under different land-use types[J]. Journal of Agro-Environment Science,2013,32(11):2286—2292.[石洪艾,李禄军,尤孟阳,等.不同土地利用方式下土壤温度与土壤水分对黑土N2O排放的影响[J].农业环境科学学报,2013,32(11):2286—2292.]
    [62] Smith K A,Thomson P E,Clayton H,et al. Effects of temperature,water content and nitrogen fertilisation on emissions of nitrous oxide by soils[J]. Atmospheric Environment,1998,32(19):3301—3309.
    [63] Chen Z,Han R Y,Yang S Q,et al. Fluxes of CO2,CH4 and N2O from seasonal freeze-thaw arable soils in Northeast China[J]. Journal of Agro-Environment Science,2016,35(2):387—395.[陈哲,韩瑞芸,杨世琦,等.东北季节性冻融农田土壤CO2、CH4、N2O通量特征研究[J].农业环境科学学报,2016,35(2):387—395.]
    [64] Chen Z,Yang S Q,Zhang Q W,et al. Effects of freeze-thaw cycles on soil nitrogen loss and availability[J]. Acta Ecologica Sinica,2016,36(4):1083—1094.[陈哲,杨世琦,张晴雯,等.冻融对土壤氮素损失及有效性的影响[J].生态学报,2016,36(4):1083—1094.]
    [65] Buckeridge K M,Banerjee S,Siciliano S D,et al. The seasonal pattern of soil microbial community structure in mesic low arctic tundra[J]. Soil Biology & Biochemistry,2013,65:338—347.
    [66] Ludwig B,Wolf I,Teepe R. Contribution of nitrification and denitrification to the emission of N2O in a freeze-thaw event in an agricultural soil[J]. Journal of Plant Nutrition and Soil Science,2004,167(6):678—684.
    [67] Cai Y J,Wang X D,Ding W X,et al. Effects of freeze-thaw on soil nitrogen transformation and N2O emission:A review[J]. Acta Pedologica Sinica,2013,50(5):1032—1042.[蔡延江,王小丹,丁维新,等.冻融对土壤氮素转化和N2O排放的影响研究进展[J].土壤学报,2013,50(5):1032—1042.]
    [68] Wang F,Gao S B,Bai L J,et al. Effect of soil particle sizes on N2O flux in freezing and thawing processes[J]. Chinese Journal of Applied&Environmental Biology,2010,16(1):126—128.[王风,高尚宾,白丽静,等.冻融过程不同粒径土壤N2O排放特征[J].应用与环境生物学报,2010,16(1):126—128.]
    [69] Wang J H,Liu J,Ma H,et al. Effects of freezing and thawing on release characteristics of nitrous oxide emission in the black soil[J]. Environment and Development,2014,26(4):42—45.[王金鹤,刘嘉,马卉,等.冻融交替过程对黑土中氧化亚氮释放特性的影响[J].环境与发展,2014,26(4):42—45.]
    [70] Wang Q H,Zhou F,Shang Z Y,et al. Data-driven estimates of global nitrous oxide emissions from croplands[J]. National Science Review,2020,7(2):441—452.
    [71] Chen Z M,Li Y,Xu Y H,et al. Spring thaw pulses decrease annual N2O emissions reductions by nitrification inhibitors from a seasonally frozen cropland[J]. Geoderma,2021,403:115310.
    [72] Shcherbak I,Millar N,Robertson G P. Global metaanalysis of the nonlinear response of soil nitrous oxide (N2O) emissions to fertilizer nitrogen[J]. Proceedings of the National Academy of Sciences of the United States of America,2014,111(25):9199—9204.
    [73] Li Y, Ju X T. Rational nitrogen application is the key to mitigate agricultural nitrous oxide emission[J]. Journal of Agro-Environment Science, 2020, 39(4):842-851.[李玥,巨晓棠.农田氧化亚氮减排的关键是合理施氮[J]. 农业环境科学学报, 2020, 39(4):842-851.]
    [74] Ju X T,Zhang C. The principles and indicators of rational N fertilization[J]. Acta Pedologica Sinica, 2021, 58(1): 1-13.[巨晓棠,张翀.论合理施氮的原则和指标[J]. 土壤学报, 2021, 58(1):1-13.]
    [75] Cai Y J, Wang L F, Wen L Y, et al. Nitrous oxide emission from long-term fertilized black soil by laboratory incubation[J]. Journal of Agro-Environment Science, 2008, 27(2):617-621.[蔡延江,王连峰, 温丽燕,等.培养实验研究长期不同施肥制度下中层黑土氧化亚氮的排放特征[J].农业环境科学学报, 2008, 27(2):617-621.]
    [76] Chen H H, Li X C, Hu F, et al. Soil nitrous oxide emissions following crop residue addition:A metaanalysis[J]. Global Change Biology, 2013, 19(10): 2956-2964.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张楠,苗淑杰,乔云发,陈增明,丁维新.东北农田黑土N2O排放研究进展[J].土壤学报,2022,59(4):899-909. DOI:10.11766/trxb202106220322 ZHANG Nan, MIAO Shujie, QIAO Yunfa, CHEN Zengming, DING Weixin. N2O Emissions from Black Soils in Northeast China[J]. Acta Pedologica Sinica,2022,59(4):899-909.

复制
分享
文章指标
  • 点击次数:916
  • 下载次数: 2352
  • HTML阅读次数: 1349
  • 引用次数: 0
历史
  • 收稿日期:2021-06-22
  • 最后修改日期:2021-10-08
  • 录用日期:2021-12-26
  • 在线发布日期: 2022-01-20
  • 出版日期: 2022-04-11
文章二维码