长江流域稻-油轮作区土壤磷库现状及环境风险分析
作者:
中图分类号:

S158

基金项目:

国家重点研发计划(2017YFD0200206)与国家现代农业产业技术体系(CARS-12)资助


Status of Soil Phosphorus Pool and Environmental Risk Assessment in Rice-Oilseed Rape Rotation Area in the Yangtze River Basin
Author:
Fund Project:

The National Key Research and Development Program of China (2017YFD0200206); China Agriculture Research System of MOF and MARA (CARS-12)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [40]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    明确长江流域水稻-油菜轮作种植区土壤磷(P)库现状,评估土壤磷淋失风险,以期为长江流域水稻-油菜轮作体系合理施磷提供参考。2018年4—5月在长江流域水稻-油菜轮作典型种植区域的14个省(市/区)采集油菜收获后的耕层土壤样品247个,测定土壤全磷、有效磷(Olsen-P)和可溶性磷(CaCl2-P)含量,并参考土壤全磷和Olsen-P分级指标,明确我国长江流域水稻-油菜轮作种植区域土壤磷丰缺现状,建立Olsen-P与CaCl2-P之间的定量关系。还根据Olsen-P分级选取72个样本进行Hedley磷分级测试,分析了水稻-油菜轮作种植区域土壤磷库分布特征。结果表明:长江流域水稻-油菜轮作种植区域耕层土壤全磷、Olsen-P和CaCl2-P平均含量分别为0.62 g·kg–1、23.2 mg·kg–1和 0.49 mg·kg–1。土壤全磷在长江上、中、下游间无明显差异,区域整体48.6%处于丰富状态。土壤Olsen-P缺乏和过量的现象并存,占比分别为23.1%和31.1%,土壤Olsen-P缺乏和过量的区域分别集中在长江中游和长江下游区域。长江流域水稻-油菜轮作种植区域土壤磷库以无机磷为主,平均占比达到82.2%。H2O-Pi、NaHCO3-Pi、NaOH-Pi、HCl-Pi、NaHCO3-Po、NaOH-Po和Residual-P磷库平均含量分别为10.8、46.8、115.6、218.6、22.3、104.9和193.8 mg·kg–1。随着土壤Olsen-P水平的增加,NaHCO3-Pi和NaOH-Pi含量明显增加,稳定态磷库(HCl-Pi和Residual-P)含量相对稳定。长江流域水稻-油菜轮作种植区域耕层土壤Olsen-P和CaCl2-P的关系符合双直线模型,出现突变点时Olsen-P含量为39.9 mg·kg–1,对应的CaCl2-P含量为0.6 mg·kg–1。当土壤Olsen-P含量大于39.9 mg·kg–1时,土壤磷素淋失风险增加。整体而言,长江流域水稻-油菜轮作种植区域土壤磷含量呈上升趋势,土壤Olsen-P平均含量达到适宜养分供应水平,且存在13.0%的区域处于磷素高淋失风险状态。土壤磷素主要积累在稳定态磷库中,因此,应重视磷肥的合理施用,适当降低磷肥投入,挖掘土壤中稳定态磷库潜力。旨在减少稻-油轮作体系土壤有效磷积累和环境磷素损失,提高作物磷肥利用率。

    Abstract:

    【Objective】The objective of this study was to clarify the status of soil phosphorus(P)pools in rice-oilseed rape rotation areas in the Yangtze River Basin, and assessed the risk of soil P leaching. Alse it aimed to provide a reference for reasonable phosphorus application in the rice-oilseed rape rotation system in the Yangtze River Basin. 【Method】From April to May 2018, 247 soil samples of the cultivated layer after the oilseed rape harvest were collected in 14 provinces (cities/districts) around the Yangtze River Basin in typical rice-oilseed rape rotation regions to determine soil total phosphorus, available phosphorus (Olsen-P) and soluble phosphorus (CaCl2-P). With reference to soil total phosphorus and available phosphorus grading indexes, the current status of soil phosphorus abundance and deficiency in rice-oilseed rape rotation areas in the Yangtze River Basin was clarified, and the quantitative relationship between Olsen-P and CaCl2-P was established. According to the available phosphorus grading, 72 samples were selected for Hedley phosphorus fraction determination, and the distribution characteristics of soil phosphorus pool in rice-oilseed rape rotation were analyzed. 【Result】The results showed that the average content of total phosphorus, available phosphorus and CaCl2-P in cultivated soils of rice-oilseed rape rotation area in the Yangtze River Basin were 0.62 g·kg–1, 23.2 mg·kg–1 and 0.49 mg·kg–1, respectively. There was no significant difference in total phosphorus between the upper, middle and lower reaches of the Yangtze River, and 48.6% of the total area was in a state of abundance. The lack and excess of soil available phosphorus coexist, accounting for 23.1% and 31.1%, respectively. The areas of soil available phosphorus deficiency and excess were concentrated in the middle and lower reaches of the Yangtze River, respectively. Also the soil phosphorus pool was dominated by inorganic phosphorus, accounting for an average of 82.2%. The average content of H2O-Pi, NaHCO3-Pi, NaOH-Pi, HCl-Pi, NaHCO3-Po, NaOH-Po and Residual-P pools were 10.8, 46.8, 115.6, 218.6, 22.3, 104.9 and 193.8 mg·kg–1, respectively. With an increase in soil available phosphorus levels, the contents of NaHCO3-Pi and NaOH-Pi increased significantly, and the stable phosphorus pools(HCl-Pi and Residual-P)were relatively stable. The relationship between Olsen-P and CaCl2-P conformed to the double-line model. When a change point appeard, the content of Olsen-P was 39.9 mg·kg–1with a corresponding content of CaCl2-P of 0.6 mg·kg–1. Also, when the Olsen-P content was greater than 39.9 mg·kg–1, the risk of soil phosphorus leaching increased. 【Conclusion】 Generally, the soil phosphorus content in the rice-oilseed rape rotation area in the Yangtze River Basin showed an upward trend and 13.0% of this area was at a high risk of phosphorus leaching. Also, the soil phosphorus mainly accumulated in stable phosphorus pools. Therefore, more attention should be paid to the rational application of phosphorus fertilizers, appropriately reduce phosphorus fertilizer input, and tap the potential of stable phosphorus pools in soils. Thus, this will reduce soil Olsen-P accumulation, environmental P loss in the rice-oilseed rape rotation system, and improve crop P fertilizer utilization.

    参考文献
    [1] MacIntosh K A,Mayer B K,McDowell R W,et al. Managing diffuse phosphorus at the source versus at the sink[J]. Environmental Science & Technology,2018,52(21):11995—12009.
    [2] Liu X C,Beusen A H W,van Beek L P H,et al. Exploring spatiotemporal changes of the Yangtze River(Changjiang)nitrogen and phosphorus sources,retention and export to the East China Sea and Yellow Sea[J]. Water Research,2018,142:246—255.
    [3] Zhang S J,Xia H D,Tang W L,et al. Current status and sustainable development of phosphorite resources in China[J]. China Mining Magazine,2014,23(S2):8—13.[张苏江,夏浩东,唐文龙,等. 中国磷矿资源现状分析及可持续发展建议[J]. 中国矿业,2014,23(S2):8—13.]
    [4] Sharpley A N,Bergström L,Aronsson H,et al. Future agriculture with minimized phosphorus losses to waters:Research needs and direction[J]. AMBIO,2015,44(2):163—179.
    [5] Wang Y,Ren T,Zhang Y,et al. Limitation standard of phosphorus management under paddy-upland rotation cropping system in Yangtze River Basin[J]. Phosphate & Compound Fertilizer,2021,36(2):19—21.[汪玉,任涛,张勇,等. 长江流域水旱轮作体系磷素管理限量标准(草案)[J]. 磷肥与复肥,2021,36(2):19—21.]
    [6] National Bureau of Statistics of the People's Republic of China. China statistical yearbook[M]. Beijing:China Statistics Press,2020.[中华人民共和国统计局. 中国统计年鉴[M]. 北京:中国统计出版社,2020.]
    [7] Lü Y. Phosphorus balance in paddy-upland rotation system and processes of increasing soil phosphorus availability[D]. Beijing:China Agricultural University,2016.[吕阳. 水旱轮作体系的磷平衡与土壤磷有效化过程研究[D]. 北京:中国农业大学,2016.]
    [8] Cao N,Chen X P,Zhang F S,et al. Prediction of phosphate fertilizer demand in China based on change in soil phosphate fertility[J]. Acta Pedologica Sinica,2007,44(3):536—543.[曹宁,陈新平,张福锁,等. 从土壤肥力变化预测中国未来磷肥需求[J]. 土壤学报,2007,44(3):536—543.]
    [9] National Agricultural Technical Extension and Service Center. Soil basic nutrient date of soil testing and fertilizer recommendation(2005-2014)[M]. Beijing:China Agriculture Press,2015.[全国农业技术推广服务中心. 测土配方施肥土壤基础养分数据集(2005-2014)[M]. 北京:中国农业出版社,2015.]
    [10] Wang W L,Liang T,Wang L Q,et al. The effects of fertilizer applications on runoff loss of phosphorus[J]. Environmental Earth Sciences,2013,68(5):1313—1319.
    [11] Zhong X Y,Zhao X R,Bao H J,et al. The evaluation of phosphorus leaching risk of 23 Chinese soils Ⅰ. Leaching criterion[J]. Acta Ecologica Sinica,2004,24(10):2275—2280.[钟晓英,赵小蓉,鲍华军,等. 我国23个土壤磷素淋失风险评估Ⅰ.淋失临界值[J]. 生态学报,2004,24(10):2275—2280.]
    [12] Schoumans O F,Groenendijk P. Modeling soil phosphorus levels and phosphorus leaching from agricultural land in the Netherlands[J]. Journal of Environmental Quality,2000,29(1):111—116.
    [13] Ye X F,Bai J H,Lu Q Q,et al. Spatial distribution of phosphorus in surface soils of wetlands with different plant communities in the Yellow River Delta,China[J]. Advanced Materials Research,2013,726/727/728/729/730/731:1383—1386.
    [14] Li X L,Hou X Y,Mu H B,et al. P fertilization effects on the accumulation,transformation and availability of soil phosphorus[J]. Acta Prataculturae Sinica,2015,24(8):218—224.[李新乐,侯向阳,穆怀彬,等. 连续6年施磷肥对土壤磷素积累、形态转化及有效性的影响[J]. 草业学报,2015,24(8):218—224.]
    [15] Strokal M,Ma L,Bai Z H,et al. Alarming nutrient pollution of Chinese rivers as a result of agricultural transitions[J]. Environmental Research Letters,2016,11(2):024014.
    [16] Bao S D. Soil and agricultural chemistry analysis[M]. 3rd ed. Beijing:China Agriculture Press,2000.[鲍士旦. 土壤农化分析[M]. 第3版. 北京:中国农业出版社,2000.]
    [17] Hedley M J,Stewart J W B,Chauhan B S. Changes in inorganic and organic soil phosphorus fractions induced by cultivation practices and by laboratory incubations[J]. Soil Science Society of America Journal,1982,46(5):970—976.
    [18] Sui Y B,Thompson M L,Shang C. Fractionation of phosphorus in a mollisol amended with biosolids[J]. Soil Science Society of America Journal,1999,63(5):1174—1180.
    [19] National Soil Survey Office. Chinese soil[M]. Beijing:China Agriculture Press,1998.[全国土壤普查办公室. 中国土壤[M]. 北京:中国农业出版社,1998.]
    [20] Yan J Y,Wang K K,Liao S P,et al. Technical regulations for high-efficiency application of phosphate fertilizer in rice-rapeseed rotation system in the middle reaches of Yangtze River[J]. Phosphate & Compound Fertilizer,2021,36(2):37—39.[闫金垚,王昆昆,廖世鹏,等. 长江中游地区水稻-油菜轮作体系磷肥高效施用技术规程[J]. 磷肥与复肥,2021,36(2):37—39.]
    [21] Zou J. Study on response of winter rapeseed to NPKB fertilization and abundance & deficiency indices of soil nutrients[D]. Wuhan:Huazhong Agricultural University,2010.[邹娟. 冬油菜施肥效果及土壤养分丰缺指标研究[D]. 武汉:华中农业大学,2010.]
    [22] Zhao X R,Zhong X Y,Bao H J,et al. Relating soil P concentrations at which P movement occurs to soil properties in Chinese agricultural soils[J]. Geoderma,2007,142(3/4):237—244.
    [23] Li H,Huang G,Meng Q,et al. Integrated soil and plant phosphorus management for crop and environment in China. A review[J]. Plant and Soil,2011,349(1/2):157—167.
    [24] Zhang W F,Ma W Q,Ji Y X,et al. Efficiency,economics,and environmental implications of phosphorus resource use and the fertilizer industry in China[J]. Nutrient Cycling in Agroecosystems,2008,80(2):131—144.
    [25] Li H G,Liu J,Li G H,et al. Past,present,and future use of phosphorus in Chinese agriculture and its influence on phosphorus losses[J]. AMBIO,2015,44(2):274—285.
    [26] Rowe H,Withers P J A,Baas P,et al. Integrating legacy soil phosphorus into sustainable nutrient management strategies for future food,bioenergy and water security[J]. Nutrient Cycling in Agroecosystems,2016,104(3):393—412.
    [27] Gao C,Zhang T L,Wu W D. Risk evaluation of agricultural soil phosphorus release to the water bodies[J]. Acta Scientiae Circumstantiae,2001,21(3):344—348.[高超,张桃林,吴蔚东. 农田土壤中的磷向水体释放的风险评价[J]. 环境科学学报,2001,21(3):344—348.]
    [28] Boeykens S P,Piol M N,Samudio Legal L,et al. Eutrophication decrease:Phosphate adsorption processes in presence of nitrates[J]. Journal of Environmental Management,2017,203:888—895.
    [29] Hua L L,Liu J,Zhai L M,et al. Risks of phosphorus runoff losses from five Chinese paddy soils under conventional management practices[J]. Agriculture,Ecosystems & Environment,2017,245:112—123.
    [30] Shen Y,Duan Y H,Huang S M,et al. Response of CaCl2-P to phosphorus fertilization and leaching risk in fluvo-aquic soils[J]. Journal of Plant Nutrition and Fertilizers,2018,24(6):1689—1696.[申艳,段英华,黄绍敏,等. 潮土CaCl2-P含量对磷肥施用的响应及其淋失风险分析[J]. 植物营养与肥料学报,2018,24(6):1689—1696.]
    [31] Zhang M K,Wang L P. Study on mechanisms of phosphorus downward transfer in arable soils[J]. Journal of Agro-Environment Science,2007,26(1):282—285.[章明奎,王丽平. 旱耕地土壤磷垂直迁移机理的研究[J]. 农业环境科学学报,2007,26(1):282—285.]
    [32] Xiang D L,Yang X Y,Sun B H,et al. Impacts of irrigation regimes on phosphorus leaching in manural loessial soil[J]. Plant Nutrition and Fertilizer Science,2010,16(1):112—117.[项大力,杨学云,孙本华,等. 灌溉水平对塿土磷素淋失的影响[J]. 植物营养与肥料学报,2010,16(1):112—117.]
    [33] Sharpley A. Managing agricultural phosphorus to minimize water quality impacts[J]. Scientia Agricola,2016,73(1):1—8.
    [34] Hu Y F,Ye X S,Shi L,et al. Genotypic differences in root morphology and phosphorus uptake kinetics in Brassica napus under low phosphorus supply[J]. Journal of Plant Nutrition,2010,33(6):889—901.
    [35] Yaqubi M,Shahraki J,Sabouhi Sabouni M. On dealing with the pollution costs in agriculture:A case study of paddy fields[J]. Science of the Total Environment,2016,556:310—318.
    [36] Fan M S,Jiang R F,Zhang F S,et al. Nutrient management strategy of paddy rice-upland crop rotation system[J]. Chinese Journal of Applied Ecology,2008,19(2):424—432.[范明生,江荣风,张福锁,等. 水旱轮作系统作物养分管理策略[J]. 应用生态学报,2008,19(2):424—432.]
    [37] Timsina J,Connor D J. Productivity and management of rice-wheat cropping systems:Issues and challenges[J]. Field Crops Research,2001,69(2):93—132.
    [38] Cahill S,Johnson A,Osmond D,et al. Response of corn and cotton to starter phosphorus on soils testing very high in phosphorus[J]. Agronomy Journal,2008,100(3):537—542.
    [39] Zhu J,Li M,Whelan M. Phosphorus activators contribute to legacy phosphorus availability in agricultural soils:A review[J]. Science of the Total Environment,2018,612:522—537.
    [40] Wang K K,Liao S P,Ren T,et al. Effect of continuous straw returning on soil phosphorus availability and crop phosphorus utilization efficiency of oilseed rape-rice rotation[J]. Scientia Agricultura Sinica,2020,53(1):94—104.[王昆昆,廖世鹏,任涛,等. 连续秸秆还田对油菜水稻轮作土壤磷素有效性及作物磷素利用效率的影响[J]. 中国农业科学,2020,53(1):94—104.]
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

闫金&#;,郭丽璇,王昆昆,廖世鹏,陆志峰,丛日环,李小坤,任涛,鲁剑巍.长江流域稻-油轮作区土壤磷库现状及环境风险分析[J].土壤学报,2023,60(1):247-257. DOI:10.11766/trxb202108050327 YAN Jinyao, GUO Lixuan, WANG Kunkun, LIAO Shipeng, LU Zhifeng, CONG Rihuan, LI Xiaokun, REN Tao, LU Jianwei. Status of Soil Phosphorus Pool and Environmental Risk Assessment in Rice-Oilseed Rape Rotation Area in the Yangtze River Basin[J]. Acta Pedologica Sinica,2023,60(1):247-257.

复制
分享
文章指标
  • 点击次数:650
  • 下载次数: 1783
  • HTML阅读次数: 1460
  • 引用次数: 0
历史
  • 收稿日期:2021-08-05
  • 最后修改日期:2021-10-05
  • 录用日期:2021-11-19
  • 在线发布日期: 2021-11-24
文章二维码