桂东南花岗岩崩岗土壤界限含水率空间变异及影响因素
作者:
作者单位:

1.广西大学林学院;2.广西大学农学院

作者简介:

通讯作者:

中图分类号:

基金项目:

广西自然科学基金项目(2021GXNSFBA075017)和国家自然科学基金项目(42007055,41630858)


Spatial Variation and Influencing Factors of Soil Limiting Water Content of Granite Collapsing Gullies in Southeast Guangxi
Author:
Affiliation:

1.Forestry College of Guangxi University;2.Agricultural College of Guangxi University

Fund Project:

Supported by the Guangxi Natural Science Foundation Project (No. 2021GXNSFBA075017) and the National Natural Science Foundation of China (Nos. 42007055,41630858)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    界限含水率是土壤水理性质的重要参数,可表征土体状态随含水量变化而变化的能力,与崩岗土体稳定性密切相关,对预测降雨和崩岗侵蚀关系具有重要意义。本研究选取桂东南区活动型、半稳定型和稳定型3种花岗岩崩岗为研究对象,分析各崩岗土壤界限含水率空间变异规律并利用通径分析方法揭示其影响因素。结果表明:崩岗各部位土壤界限含水率在空间上存在差异,活动型和半稳定型崩岗土壤液塑限在崩壁上部有最大值(液限分别为54.45%和57.08%,塑限分别为32.84%和34.04%),洪积锥顶部有最小值(液限分别为35.39%和30.72%,塑限分别为21.92%和20.23%);稳定型崩岗崩壁下部土壤液塑限最小(液限为33.78%,塑限为22.47%);随着崩岗发育逐渐稳定,各部位土壤界限含水率总体呈增加趋势。黏粒、有机质、总孔隙度和毛管孔隙度与土壤液塑限及塑性指数呈极显著正相关关系,其中,总孔隙度对土壤液塑限的影响最显著。总孔隙度、黏粒、有机质、毛管孔隙度对界限含水率变化起主导作用,总孔隙度、黏粒和毛管孔隙度分别是土壤液塑限、塑性指数和液性指数的主要影响因子。此研究结果可进一步明确崩岗侵蚀危害并确定高侵蚀风险部位,为崩岗危害预防与治理提供相关理论支撑。

    Abstract:

    【Objective】Collapsing gully is an erosion phenomenon of hillside soil under the effect of gravity damage collapse and hydraulic scouring. It is also the most serious and harmful typical soil erosion mode in the granite red soil area in South China. Collapsing gully is mainly distributed in granite hilly areas in seven provinces of Guangdong, Jiangxi, Guangxi, Fujian, Hunan, Hubei and Anhui, and their erosion modulus is large and widely distributed. This causes serious concerns for the local ecological environment and economic development. Limiting water content is an important parameter of soil hydraulic properties, which can characterize the ability of the soil state to change with a change in water content. Given that this is closely related to the stability of collapsing gullies soil, it is of great significance to predict the relationship between rainfall and collapsing gullies erosion.【Method】We selected three types of granite collapsing gullies in southeastern Guangxi, active, semi-stable and stable, as the object of study to analyze the spatial variation of soil limiting water content in each collapsing gullies and to reveal the influencing factors by using the method of path analysis.【Result】The main results were as follows: (1) Soil limiting water content of each part of collapsing gully varies spatially, the liquid plastic limit of active and semi-stable collapsing gullies soils had maximum value at top of collapsing wall (the liquid limit was 54.45% and 57.08%, the plastic limit was 32.84% and 34.04%, respectively ) and minimum value at the top of the pluvial cone (the liquid limit was 35.39% and 30.72%, the plastic limit was 21.92% and 20.23% respectively ). Also, the liquid plastic limit of stable collapsing gully had the lowest value at the bottom of the colluvial deposit (the liquid limit was 33.78% and the plastic limit was 22.47%). After gradually stabilizing the development of collapsing gullies, the limiting water content of the soil in each part showed an overall increasing trend. (2) Correlation analysis showed that clay content, organic matter, total porosity and capillary porosity were positively correlated with soil liquid plastic limit and plasticity index, with total porosity having the most significant effect on soil liquid plastic limit. Nevertheless, soil bulk, gravel content and sand content were negatively correlated with soil liquid plastic limit and plasticity index. (3) Path analysis showed that total porosity, clay content, organic matter and capillary porosity played a dominant role in the variation of the limiting water content. Furthermore, total porosity, clay content and capillary porosity were the main factors influencing the liquid plastic limit, plasticity index and liquidity index of soil, respectively. The higher the clay content, total porosity and organic matter, the higher the liquid plastic limit and plasticity index of soil. Also, the stronger the cohesion of the soil, the better the water retention performance of the soil, and the more difficult it is for the soil to crumble and be lost. Capillary porosity negatively affects the liquidity index, that is, the larger the capillary porosity, the lower the liquidity index and the more stable the soil is.【Conclusion】The limiting water content is closely related to the start-up and stability of collapsing gullies. When the limiting water content is low and is washed by rain, the soil state is easy to change, and surface runoff is produced, which causes soil collapse and fertility loss. Therefore, the results of this study can help to clarify the soil erosion process, further clarify the erosion hazards of collapsing gullies and identify high erosion risk areas. It can also provide theoretical support for the prevention and management of collapsing gullies hazard and have important significance for the prediction of regional soil and water conservation.

    参考文献
    相似文献
    引证文献
引用本文

韦江杏,邓羽松,廖达兰,黄婉霞,黄 娟,蒋代华.桂东南花岗岩崩岗土壤界限含水率空间变异及影响因素[J].土壤学报,DOI:10.11766/trxb202107120359,[待发表]
WEI Jiangxing, DENG Yusong, LIAO Dalan, HUANG Wanxia, HUANG Juan, JIANG Daihua. Spatial Variation and Influencing Factors of Soil Limiting Water Content of Granite Collapsing Gullies in Southeast Guangxi[J]. Acta Pedologica Sinica, DOI:10.11766/trxb202107120359,[In Press]

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-07-12
  • 最后修改日期:2022-06-02
  • 录用日期:2022-07-14
  • 在线发布日期: 2022-08-24
  • 出版日期: