毛乌素沙地人工林恢复对土壤剖面化学性质和细菌群落的影响
作者:
作者单位:

1.西北农林科技大学水土保持研究所;2.西北农林科技大学生命科学学院;3.中国农业大学生物学院;4.西北农林科技大学植物保护学院;5.陕西省神木市生态保护建设协会

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(42077048)和中国科学院战略性先导科技专项(A类)项目(XDA23070201)资助


Effects of Plantation Restoration on Chemical Properties and Bacterial Community in Soil Profiles in Mu Us Sandy Land
Author:
Affiliation:

1.Institute of Soil and Water Conservation, Northwest A&F University, Yangling;2.College of Life Science, Northwest A&F University, State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Yangling;3.College of Biological Sciences, China Agricultural University;4.College of Plant Protection, Northwest A&F University, Yangling;5.Shenmu Ecological Protection and Construction Association, Shenmu

Fund Project:

Supported by the National Natural Science Foundation of China (No. 42077048) and the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDA23070201)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    明确贫瘠沙地人工林恢复过程中土壤化学性质和微生物群落的动态变化可为风沙区人工林的健康经营和土壤肥力培育提供理论依据。以毛乌素沙地广泛分布的不同年限樟子松林为研究对象,运用高通量扩增子测序和FAPROTAX功能预测技术,解析沙地人工林恢复过程中土壤剖面(0~100 cm)化学性质和细菌群落的分布格局及其变化特征。结果表明:(1)人工林恢复提高了土壤有机碳(SOC)、全氮(TN)及全磷(TP)含量,但降低了土壤有效氮(AN)、有效磷(AP)含量和pH;随土层深度增加,TN含量呈显著下降趋势,而AP含量和pH则相反,TP含量无显著变化。(2)人工林恢复显著改变了变形菌门(Proteobacteria)、酸杆菌门(Acidobacteria)和绿弯菌门(Chloroflexi)的相对丰度,增加了土壤细菌群落基于多度覆盖的物种估计量(ACE指数);随林分发育,细菌群落的垂直空间变异减小。(3)功能预测表明:人工林恢复降低了土壤细菌对有机物质的分解潜力,造林15年后纤维素分解和芳香族化合物降解过程与未造林样点相比分别下降54.65%和72.18%;但增强了氮的固定及反硝化过程,分别增加99.26%和100.5%。(4)冗余分析和相关性分析表明:SOC和pH是影响细菌群落及其潜在生态功能的重要环境因子。综上可知,沙地人工林恢复虽然增加了土壤碳氮磷总量,但人工林恢复至15年时土壤有效氮磷养分仍显著下降,并显著改变了土壤细菌群落多样性与功能。因此,人为调控措施(如调控凋落物分解与养分释放)对提升干旱和贫瘠生境中沙化土壤养分有效性和微生物多样性与功能具有重要作用,今后在风沙区人工林生态恢复工作中应着重关注林下凋落物的就地留存和腐解。

    Abstract:

    【Objective】Afforestation is the main measure for desertification combating and plays a key role in improving soil quality and reestablishing degraded ecosystem functions. However, the spatial distribution in soil chemical properties and bacterial communities after the forest reconstruction in sandy land has not been well evaluated. The objective of this study was to investigate responses of the soil chemical properties and bacterial communities in soil profiles to afforestation and to provide a scientific basis for the healthy management and fertility cultivation of barren sandy soils in Northern China. 【Method】In this study, we selected Pinus sylvestris var. mongolica plantations which included 0, 5, 8, and 15 by using the space-time substitution method in Mu Us Sandy Land located in Yulin, Shannxi, China. Soil samples were collected from 0-10 cm, 10-20 cm, 20-30 cm, 30-60 cm, and 60-100 cm. The high-throughput amplicon sequencing of the 16S rRNA and Functional Annotation of Prokaryotic Taxa (FAPROTAX) tool was used to quantify the composition, diversity, and putative ecological functions of soil bacterial community, and then to determine the relationship between bacterial community and soil properties. 【Result】Results showed that: (1) The conversion from sandy land to plantations increased soil organic carbon (SOC), total nitrogen (TN), and total phosphorus (TP) contents, but decreased available nitrogen (AN), available phosphorus (AP) contents, and pH. TN content decreased with soil layers, while AP and pH were increased. TP had no significant change in soil profiles. (2) Afforestation significantly changed the relative abundance of the Proteobacteria, Acidobacteria and Chloroflexi, and increased soil bacterial ACE (abundance-based coverage estimator) index. Importantly, the vertical spatial variation in bacterial communities decreased. (3) FAPROTAX showed that after 15 years of afforestation, cellulolysis and aromatic compound degradation decreased by 54.65% and 72.18%, respectively. However, nitrogen fixation and denitrification were enhanced by 99.26% and 100.5%, respectively. (4) Redundancy analysis and Pearson correlation analysis indicated that SOC and pH were the key factors varying the bacterial community and putative ecological functions. 【Conclusion】Overall, the conversion from sandy land to Pinus sylvestris var. mongolica plantations can negatively affect soil available nutrients such as AN and AP, and also alter the diversity and putative functions of the soil bacterial community. Consequently, artificial control measures (such as regulation of litter degradation and nutrient return) are crucial for improving the bioavailability of nutrient elements and microbial functional diversity in arid and barren sandy soil. In the future, on-the-spot preservation and decomposition of litter in the ecological restoration work of artificial forests in sandy areas should be prioritized.

    参考文献
    相似文献
    引证文献
引用本文

田静,步连燕,陈文峰,安德荣,张应龙,韦革宏,王红雷.毛乌素沙地人工林恢复对土壤剖面化学性质和细菌群落的影响[J].土壤学报,DOI:10.11766/trxb202112200405,[待发表]
TIAN Jing, BU Lianyan, CHEN Wenfeng, AN Derong, ZHANG Yinglong, WEI Gehong, WANG Honglei. Effects of Plantation Restoration on Chemical Properties and Bacterial Community in Soil Profiles in Mu Us Sandy Land[J]. Acta Pedologica Sinica, DOI:10.11766/trxb202112200405,[In Press]

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-08-05
  • 最后修改日期:2022-05-12
  • 录用日期:2022-07-05
  • 在线发布日期: 2022-07-08
  • 出版日期: