广西富硒土壤中氧化铁对Se(Ⅳ)吸附解吸的影响机制
作者:
中图分类号:

S153

基金项目:

国家自然科学基金项目(41967006)和广西自然科学基金重点项目(2018GXNSFDA281035)共同资助


Effects of Iron Oxide on the Adsorption and Desorption of Se(Ⅳ)in Selenium-Rich Soils of Guangxi
Author:
Fund Project:

The National Natural Science Foundation of China(No.41967006) and the key project of Guangxi Natural Science Foundation(No.2018GXNSFDA281035)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [25]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为探究游离氧化铁对富硒土壤吸附解吸Se(Ⅳ)的影响机理,以广西富硒赤红壤、红壤为研究对象,通过等温吸附解吸实验,比较去除游离氧化铁前后土壤对Se(Ⅳ)的吸附解吸特征,同时运用Zeta电位、扫描电镜-能谱分析和傅里叶红外光谱技术分析其机理。结果表明:Langmuir和Freundlich等温吸附方程均能较好地拟合供试土壤吸附Se(Ⅳ)过程,相关系数在0.920~0.995之间。供试土壤最大吸附量由高到低依次为:赤红壤(1 399 mg·kg-1)、红壤(1 336 mg·kg-1)、去氧化铁赤红壤(444 mg·kg-1)、去氧化铁红壤(352 mg·kg-1)。去除游离氧化铁后,红壤、赤红壤的Zeta电位分别由-24.42、-18.06 mV变为-33.06和-26.43 mV,且比表面积减小。红壤、赤红壤及其去氧化铁土对Se(Ⅳ)的解吸率在2%~7%之间,去氧化铁土的解吸率高于红壤、赤红壤。红外光谱分峰拟合分析可知,土壤主要通过-OH、Fe-O、C=O等含氧基团与硒发生反应,土壤去除氧化铁后,Fe-O在吸附中的作用减弱或消失。综上,游离氧化铁可通过自身理化特性及表面基团提高土壤对Se(Ⅳ)的吸附容量和强度,减少土壤对Se(Ⅳ)的释放。

    Abstract:

    【Objective】The influence of free iron oxide on the adsorption and desorption of Se(Ⅳ) in a lateritic red soil and red soil in the selenium-rich area of Guangxi was studied. 【Method】The adsorption and desorption characteristics of Se(Ⅳ) in the soil before and after removing free iron oxide were compared by isothermal adsorption and desorption experiments. Zeta potential, scanning electron microscopy and energy spectrum analysis and Fourier transform infrared spectroscopy was used to explore the influencing mechanism.【Result】The results showed that the adsorption process for Se(Ⅳ) fitted the Langmuir and Freundlich models, with correlation coefficients ranging between 0.920~0.995. After removing free iron oxide of red soil and lateritic red soil, the zeta potential became more negative and changed from -24.42 and -18.06 mV to -33.06 and-26.43 mV. Also, the specific surface area was decreased. This observation correlated with the lower adsorption capacities of the soils after the removal of free iron oxide. Hence, the order of maximum adsorption capacity was: lateritic red soil (1 399 mg·kg-1) > red soil (1 336 mg·kg-1) > DCB-treated lateritic red soil (444 mg·kg-1) > DCB-treated red soil (352 mg·kg-1). The desorption rates of the tested soils were between 2% and 7%, while that of DCB-treated soils were higher than that of the original soils. The FTIR peak fitting analysis showed that the soils reacted with selenium mainly through the oxygen-containing groups such as -OH, Fe-O and C=O. After the removal of iron oxide, the effect of Fe-O in the adsorption was weakened or disappeared.【Conclusion】Free iron oxide can significantly increase the adsorption capacity and strength of soil for Se(Ⅳ) and reduce the release of Se(Ⅳ) by its physical and chemical properties and surface groups.

    参考文献
    [1] Wang S F,Lei L,Zhang D N,et al. Stabilization and transformation of selenium during the Fe(II)-induced transformation of Se(IV)-adsorbed ferrihydrite under anaerobic conditions[J]. Journal of Hazardous Materials,2020,384:121365.
    [2] Wei Z Q,Chen Y M,Guo Y,et al. Enrichment of selenium in cultivated soils and crops in Zunyi,Guizhou[J]. Chinese Journal of Soil Science,2021,52(3):642-649.[魏泽权,陈云明,郭宇,等. 贵州遵义地区硒在耕地土壤及农作物中的分布规律[J]. 土壤通报,2021,52(3):642-649.]
    [3] Zhou G H. Research progress of selenium-enriched land resources and evaluation methods[J]. Rock and Mineral Analysis,2020,39(3):319-336.[周国华. 富硒土地资源研究进展与评价方法[J]. 岩矿测试,2020,39(3):319-336.]
    [4] Wang X,Zhang Z,Zhu J,et al. Study of correlation between rice selenium and status of selenium in selenium-rich soil in Qingyang County[J]. Earth and Environment,2019,47(3):336-344.[王潇,张震,朱江,等. 青阳县富硒土壤中硒的形态与水稻富硒的相关性研究[J]. 地球与环境,2019,47(3):336-344.]
    [5] Zhang L,Liu G D,Lü S J,et al. Distribution characteristics of selenium cultivated soil and its influencing factors in Hailun County of Heilongjiang Province[J]. Geoscience,2019,33(5):1046-1054.[张立,刘国栋,吕石佳,等. 黑龙江省海伦市农耕区土壤硒分布特征及影响因素[J]. 现代地质,2019,33(5):1046-1054.]
    [6] Pisarek P,Bueno M,Thiry Y,et al. Selenium distribution in French forests:Influence of environmental conditions[J]. Science of the Total Environment,2021,774:144962.
    [7] Fu Q L,Deng Y L,Hu H Q,et al. Effects of Fe and Al oxides on adsorption of bt toxin by several soils in south of China[J]. Scientia Agricultura Sinica,2012,45(23):4836-4843.[付庆灵,邓雅丽,胡红青,等. 南方主要土壤中铁铝氧化物对土壤吸附Bt蛋白的影响[J]. 中国农业科学,2012,45(23):4836-4843.]
    [8] Xu Y F,Li Y H,Li H R,et al. Effects of topography and soil properties on soil selenium distribution and bioavailability(phosphate extraction):A case study in Yongjia County,China[J]. Science of the Total Environment,2018,633:240-248.
    [9] Qin J X,Fu W,Zheng G D,et al. Selenium distribution in surface soil layer of Karst area of Guangxi and its affecting factors:A case study of Wuming County[J]. Acta Pedologica Sinica,2020,57(5):1299-1310.[覃建勋,付伟,郑国东,等. 广西岩溶区表层土壤硒元素分布特征与影响因素探究--以武鸣县为例[J]. 土壤学报,2020,57(5):1299-1310.]
    [10] Zhou Y Z,Liu Y,Wang B,et al. Influence factors of soil selenium in cultivated area of Nangqian County,Qinghai Province[J]. Geological Bulletin of China,2020,39(12):1952-1959.[周殷竹,刘义,王彪,等. 青海省囊谦县农耕区土壤硒的富集因素[J]. 地质通报,2020,39(12):1952-1959.]
    [11] Jadhav A S,Amrani M A,Singh S K,et al. γ-FeOOH and γ-FeOOH decorated multi-layer graphene:Potential materials for selenium(VI)removal from water[J]. Journal of Water Process Engineering,2020,37:101396.
    [12] Wang R,Niu P J,Xu H J,et al. Effects of Mn-doping on structure,surface properties and selenium adsorption of goethite[J]. Acta Pedologica Sinica,2020,57(1):108-118.[王锐,牛鹏举,许海娟,等. 锰掺杂对针铁矿的结构、表面性质及吸附硒的影响[J]. 土壤学报,2020,57(1):108-118.]
    [13] Wang S F,Lei L,Zhang D N,et al. Stabilization and transformation of selenium during the Fe(II)-induced transformation of Se(IV)-adsorbed ferrihydrite under anaerobic conditions[J]. Journal of Hazardous Materials,2020,384:121365.
    [14] Zhang G L,Gong Z T. Laboratory analytical methods for soil investigation[M]. Beijing:Science Press,2012.[张甘霖,龚子同. 土壤调查实验室分析方法[M]. 北京:科学出版社,2012.]
    [15] Liu Y X. Method for detection and analysis of selenium[M]. Beijing:Science Press,2019.[刘永贤. 硒的检测分析方法[M]. 北京:科学出版社,2019.]
    [16] Wang S,Xu J P,Wang N,et al. Structural characteristics of mineral-microbial residues formed by microbial utilization of lignin joined with Fe,Al,Mn-oxides based on FT-IR and SEM techniques[J]. Spectroscopy and Spectral Analysis,2018,38(7):2086-2093.[王帅,徐俊平,王楠,等. FTIR及SEM诊断铁铝锰氧化物参与微生物利用木质素形成矿物-菌体残留物的结构特征[J]. 光谱学与光谱分析,2018,38(7):2086-2093.]
    [17] Li X,Sun Z G,Li Y J,et al. Adsorption-desorption characteristic of micro-elements in soils of salt marshes in the Min River Estuary and its response to pH variations[J]. Acta Scientiae Circumstantiae,2020,40(5):1807-1820.[李晓,孙志高,李亚瑾,等. 闽江河口湿地土壤对痕量元素吸附-解吸特征及其对pH值变化的响应[J]. 环境科学学报,2020,40(5):1807-1820.]
    [18] Zhu Q,Guo X,Han Y,et al. Spatial differentiation of soil selenium in hilly regions of South China and its influencing factors:A case study in Fengcheng City[J]. Acta Pedologica Sinica,2020,57(4):834-843.[朱青,郭熙,韩逸,等. 南方丘陵区土壤硒空间分异特征及其影响因素--以丰城市为例[J]. 土壤学报,2020,57(4):834-843.]
    [19] Goldberg S. Modeling selenate adsorption behavior on oxides,clay minerals,and soils using the triple layer model[J]. Soil Science,2014,179(12):568-576.
    [20] Wang R,Fang D,Niu P J,et al. Influence of Mn-doping on structure and FT-IR properties of crystalline iron oxides[J]. Acta Pedologica Sinica,2020,57(4):898-907.[王锐,方敦,牛鹏举,等. Mn2+掺杂对晶质氧化铁结构与红外光谱特征的影响[J]. 土壤学报,2020,57(4):898-907.]
    [21] Wang R,Xu H J,Wei S Y,et al. Selenite adsorption mechanisms of goethite and goethite-humic acid complex[J]. Acta Pedologica Sinica,2018,55(2):399-410.[王锐,许海娟,魏世勇,等. 针铁矿和针铁矿-胡敏酸复合体对Se(Ⅳ)吸附机制[J]. 土壤学报,2018,55(2):399-410.]
    [22] Song D S,Sheng H,Zhou Q,et al. Characteristics of middle-infrared absorption spectrum of soils derived from different parent materials[J]. Chinese Journal of Soil Science,2016,47(1):1-7.[宋迪思,盛浩,周清,等. 不同母质发育土壤的中红外吸收光谱特征[J]. 土壤通报,2016,47(1):1-7.]
    [23] Wei S Y. Formation,microstructure and surface properties of binary systems containing iron oxide and phyllosilicate[D]. Wuhan:Huazhong Agricultural University,2010.[魏世勇. 氧化铁-层状硅酸盐矿物二元体的形成、微观结构和表面性质[D]. 武汉:华中农业大学,2010.]
    [24] Xiao M,Sun S X,Deng Z H. Adsorption of prometryn in 3 types of soil and the changes of their chemical characteristic groups[J]. Journal of Southwest Forestry University:Natural Sciences,2021,41(4):144-151.[肖敏,孙仕仙,邓志华. 3种土壤对扑草净的吸附过程及其化学特征基团变化[J]. 西南林业大学学报:自然科学,2021,41(4):144-151.]
    [25] Fan T Y,Wang M,Wang X M,et al. Experimental study of the adsorption of nitrogen and phosphorus by natural clay minerals[J]. Adsorption Science & Technology,2021. https://doi.org/10.1155/2021/4158151.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

黄金兰,蒋代华,王明释,黄雪娇,邓华为,黄智刚,邓羽松.广西富硒土壤中氧化铁对Se(Ⅳ)吸附解吸的影响机制[J].土壤学报,2023,60(2):479-490. DOI:10.11766/trxb202110250434 HUANG Jinlan, JIANG Daihua, WANG Mingshi, HUANG Xuejiao, DENG Huawei, HUANG Zhigang, DENG Yusong. Effects of Iron Oxide on the Adsorption and Desorption of Se(Ⅳ)in Selenium-Rich Soils of Guangxi[J]. Acta Pedologica Sinica,2023,60(2):479-490.

复制
分享
文章指标
  • 点击次数:865
  • 下载次数: 1690
  • HTML阅读次数: 853
  • 引用次数: 0
历史
  • 收稿日期:2021-10-25
  • 最后修改日期:2022-01-21
  • 录用日期:2022-03-16
  • 在线发布日期: 2022-03-17
  • 出版日期: 2023-03-28
文章二维码