生物质炭和Ca(OH)2缓解土壤酸化过程中植物铝毒性的模拟对比研究
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(41907019 )、江苏省自然科学基金项目(BK20191103,BK20190141 )和山东省自然科学基金项目(ZR202102220216)资助


Contrasting Effects of Biochar and Ca(OH)2 on Alleviating Plant Aluminum Toxicity during Soil Acidification:A Simulation Study
Author:
Affiliation:

Fund Project:

Supported by the National Natural Science Foundation of China (No. 41907019), the Natural Science Foundation of Jiangsu Province, China (Nos. BK20191103 and BK20190141), and the Natural Science Foundation of Shandong Province, China (No. ZR202102220216)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    随着外源酸输入,酸性土壤改良剂的石灰效应逐渐消退,土壤再次酸化形成铝毒害。作为一种新型酸性土壤改良剂,生物质炭施用后土壤的复酸化过程尚不清楚。本研究通过循环酸浸洗耦合根伸长试验,对比研究了施用生物质炭和熟石灰(Ca(OH)2)后土壤的复酸化过程及其对植物的铝毒性。结果表明,循环酸浸洗有效模拟了土壤的复酸化过程。随着模拟酸化年限增加,生物质炭和Ca(OH)2处理土壤中玉米根系伸长均逐渐受到了抑制。生物质炭相较于Ca(OH)2有效缓解了酸化过程对植物根系的抑制作用。在模拟12年酸输入时,生物质炭处理中玉米根相对伸长率较Ca(OH)2处理高18.6%,生物质炭相较于Ca(OH)2处理展现出更为长效的酸性土壤改良潜力。这一方面是由于生物质炭通过表面阴离子官能团质子化作用减缓了酸化过程中土壤pH的降低,抑制了土壤铝的活化。在模拟12年酸输入时,生物质炭处理土壤溶液Al3+浓度较Ca(OH)2处理低33%。另一方面,酸化过程中生物质炭持续释放Mg2+,在模拟12年酸输入时,生物质炭处理土壤溶液Mg2+浓度和植物Mg2+吸收量均较Ca(OH)2处理高2倍以上。较高的Mg2+浓度可通过调控植物对Al3+的生理响应,缓解植物铝毒害症状。该研究结果可为土壤酸化长效阻控提供理论依据和技术支撑。

    Abstract:

    【Objective】 With the input of acid, the lime effect of ameliorants on acidic soils is gradually weakened resulting in soil re-acidification and aluminum toxicity. As a new alternative amendment material for acid soils, the performance of biochar on alleviating aluminum toxicity during soil re-acidification is still unclear. To investigate the effect and mechanisms of biochar on alleviating aluminum toxicity during soil acidification, a comparative study between biochar and Ca(OH)2 was conducted through a simulated soil re-acidification test.【Method】 Cyclic acid leaching with HNO3 was used to rapidly simulate the soil acidification process. A root elongation experiment with maize was used to investigate the response of plant roots to soil acidification. The change in soil pH, soluble Al3+ and base cations (K+, Ca2+ and Mg2+) during soil acidification were also studied. 【Result】 Cyclic acid leaching effectively simulated the process of soil re-acidification. With the increase of cyclic acid leaching time, soil pH decreased and the maize root elongation was inhibited. Compared with Ca(OH)2 treatment, biochar significantly inhibited the acidification process and alleviated adverse effects on plant roots. When acid input was simulated for 12 years, the relative elongation of maize root in biochar treatment was 18.6% higher, and the relative absorption of Evans blue was 19.6% lower than that in Ca(OH)2 treatment. On the one hand, biochar slowed down the decrease of soil pH during re-acidification through the protonation of surface anionic functional groups, and thus inhibited the activation of soil aluminum. As a result, the soil pH and the soluble Al3+ concentration in biochar treatment were 0.12 units higher and 33% lower than that in Ca(OH)2 treatment with simulated 12-year acid input, respectively. On the other hand, biochar released Mg2+ continuously during soil re-acidification. In the simulation of 12-year acid input, the concentration of Mg2+ in soil solution and uptake of Mg2+ by maize in biochar treatment was more than twice higher than that in Ca(OH)2 treatment. A higher concentration of Mg2+ can help alleviate the symptoms of aluminum toxicity in maize by regulating the physiological response of plants to Al3+. 【Conclusion】 Compared with Ca(OH)2, biochar presented more long-term potential in ameliorating acidic soils under continuous acid input. These results are of important significance for management of soil acidification.

    参考文献
    相似文献
    引证文献
引用本文

来宏伟,倪妮,时仁勇,董颖,闫静,Nkoh Jackson Nkoh,李九玉,崔秀敏,徐仁扣.生物质炭和Ca(OH)2缓解土壤酸化过程中植物铝毒性的模拟对比研究[J].土壤学报,2023,60(4):1017-1025. DOI:10.11766/trxb202111250567 LAI Hongwei, NI Ni, SHI Renyong, DONG Ying, YAN Jing, NKOH Jackson Nkoh, LI Jiuyu, CUI Xiumin, XU Renkou. Contrasting Effects of Biochar and Ca(OH)2 on Alleviating Plant Aluminum Toxicity during Soil Acidification:A Simulation Study[J]. Acta Pedologica Sinica,2023,60(4):1017-1025.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-11-25
  • 最后修改日期:2022-03-25
  • 录用日期:2022-05-07
  • 在线发布日期: 2022-05-09
  • 出版日期: 2023-07-28