基于知识图谱分析的土壤氮循环功能基因研究进展
作者:
基金项目:

国家自然科学基金项目(41877412)、国家高层次青年人才项目(2016)和中国农业大学“ 2115”人才培育发展支持计划(1191-00109012)共同资助


Progress of Functional Genes Related to Soil Nitrogen Cycling Based on Knowledge Mapping
Author:
Fund Project:

the National Natural Science Foundation of China (No. 41877412), the National High Level Youth Talent Project (2016), and 2115 Talent Development Support Plan of China Agricultural University (1191-00109012)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [76]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    土壤氮循环功能基因广泛地参与包括固氮、氨化以及硝化和反硝化作用等一系列生态过程,是氮素生物地球化学循环的关键组成部分,在很大程度上影响土壤生产力、全球环境变化以及碳中和可持续发展。近几十年来,分子生物学和微生态学技术的快速发展极大地促进了土壤氮循环密切相关的功能基因以及其功能微生物群落特征等方面的研究。本研究利用检索自Web of Science数据库中2001—2020年期间土壤氮循环功能基因相关文献,结合R语言科学知识图谱分析方法,从发文量、高被引论文、高频关键词及历史直接引文等方面对土壤氮循环功能基因研究现状进行了系统分析,并总结了土壤氮循环功能基因领域的研究动态、热点和发展趋势。结果表明:1)应用分子生物学技术挖掘土壤氮循环相关微生物功能基因及群落结构探索土壤氮循环的微生物学机制,是当前土壤氮循环研究领域的热点及切入点。2)土壤氮循环功能基因研究主要集中于3个方面:①利用宏基因组学等技术对土壤氮循环相关的功能基因进行筛选、识别和注释,从而发现新的微生物功能基因序列、更新引物数据库等;②环境因子及管理措施对土壤氮循环相关微生物指标的影响;③利用功能基因丰度表征土壤氮循环过程相关功能微生物的数量变化,以及功能基因与土壤性质、微生物群落结构间关系分析,以期揭示土壤氮循环过程的分子机制。3)土壤氮循环功能基因研究领域的历史发展脉络:从氮循环功能基因筛选、鉴定、识别、相应引物设计及分析方法确定等,到土壤氮循环功能基因的影响因素(或环境条件),以及当前结合土壤氮循环相关功能基因活性、丰度与功能微生物种群、群落结构甚至土壤性质数据,综合探讨土壤氮循环微生物机制。

    Abstract:

    Functional genes related to soil nitrogen (N) cycling are widely involved in a series of ecological processes, including N fixation, ammonification, nitrification and denitrification, and are key components of the N biogeochemical cycling, which greatly affects soil productivity, carbon neutralization, and agricultural sustainable development, as well as global environmental changes. In recent decades, the rapid development of molecular and microecology technology has promoted the research about functional genes related to soil N cycle and their microbial functional communities. In order to objectively and analyze the research trends, hotspots, and historical trends in the field of functional genes related to soil N turnover, the pertinent literature retrieved from the Web of Science database from 2001 to 2020 was analyzed from four aspects of publications amount, highly cited papers, high-frequency keywords and historical direct citations based on knowledge mapping. The results showed that: 1) The application of molecular biology techniques to excavate the functional genes and community structure related to soil N turnover so as to explore the microbiological mechanism is the current hotspot and entry point in the research field. 2) The research about soil N turnover functional genes mainly focused on three aspects: (1) Using metagenomics and other technologies to screen, identify and annotate the functional genes related to soil N turnover, so as to discover new microbial functional gene sequences and updates primer database, etc.; (2) Effects of environmental factors and agricultural management practices on soil N turnover related microbial indicators; (3) Using functional gene abundance to characterize the soil N cycling processes-related functional microorganisms, as well as analyze the relationship between functional genes, soil properties, and microbial community structure, in order to reveal the molecular mechanism of soil nitrogen turnover. 3) The historical development context of soil N turnover functional genes was from the screening, identification, identification, corresponding primer design and analysis method determination of N-cycling functional genes, to the influencing factors (or environmental conditions) of soil N turnover functional genes, combined with the current data of the activity, abundance of functional genes related to soil N turnover, and functional microbial populations, community structure and even soil properties, to comprehensively explore the microbial mechanism of soil N cycling.

    参考文献
    [1] Robertson G P,Vitousek P M. Nitrogen in agriculture:Balancing the cost of an essential resource[J]. Annual Review of Environment and Resources,2009,34(1):97—125.
    [2] Gruber N,Galloway J N. An Earth-system perspective of the global nitrogen cycle[J]. Nature,2008,451(7176):293—296.
    [3] Kuypers M M M,Marchant H K,Kartal B. The microbial nitrogen-cycling network[J]. Nature Reviews Microbiology,2018,16(5):263—276.
    [4] Ouyang Y,Evans S E,Friesen M L,et al. Effect of nitrogen fertilization on the abundance of nitrogen cycling genes in agricultural soils:A meta-analysis of field studies[J]. Soil Biology & Biochemistry,2018,127:71—78.
    [5] Levy-Booth D J,Prescott C E,Grayston S J. Microbial functional genes involved in nitrogen fixation,nitrification and denitrification in forest ecosystems[J]. Soil Biology & Biochemistry,2014,75:11—25.
    [6] He Z L,Gentry T J,Schadt C W,et al. GeoChip:a comprehensive microarray for investigating biogeochemical,ecological and environmental processes[J]. The ISME Journal,2007,1(1):67—77.
    [7] Li P,Jiang Z,Wang Y H,et al. Analysis of the functional gene structure and metabolic potential of microbial community in high arsenic groundwater[J]. Water Research,2017,123:268—276.
    [8] Zhou J Z,He Z L,Yang Y F,et al. High-throughput metagenomic technologies for complex microbial community analysis:Open and closed formats[J]. mBio,2015,6(1):e02288—14.
    [9] He Z L,Xu M Y,Deng Y,et al. Metagenomic analysis reveals a marked divergence in the structure of belowground microbial communities at elevated CO2[J]. Ecology Letters,2010,13(5):564—575.
    [10] Ouyang Y,Reeve J R,Norton J M. Soil enzyme activities and abundance of microbial functional genes involved in nitrogen transformations in an organic farming system[J]. Biology and Fertility of Soils,2018,54(4):437—450.
    [11] Li X M,Qiao J T,Li S,et al. Bacterial communities and functional genes stimulated during anaerobic arsenite oxidation and nitrate reduction in a paddy soil[J]. Environmental Science & Technology,2020,54(4):2172—2181.
    [12] Hou H J,Qin H L,Chen C L,et al. Research progress of the molecular ecology on microbiological processes in soil nitrogen cycling[J]. Research of Agricultural Modernization,2014,35(5):588—594.[侯海军,秦红灵,陈春兰,等. 土壤氮循环微生物过程的分子生态学研究进展[J]. 农业现代化研究,2014,35(5):588—594.]
    [13] Petersen D G,Blazewicz S J,Firestone M,et al. Abundance of microbial genes associated with nitrogen cycling as indices of biogeochemical process rates across a vegetation gradient in Alaska[J]. Environmental Microbiology,2012,14(4):993—1008.
    [14] Aria M,Cuccurullo C. Bibliometrix:An R-tool for comprehensive science mapping analysis[J]. Journal of Informetrics,2017,11(4):959—975.
    [15] Shi C,Qu L Q,Zhang Q W,et al. A systematic review on comprehensive sloping farmland utilization based on a perspective of scientometrics analysis[J]. Agricultural Water Management,2021,244:106564.
    [16] Padilla F M,Gallardo M,Manzano-Agugliaro F. Global trends in nitrate leaching research in the 1960—2017 period[J]. Science of the Total Environment,2018,643:400—413.
    [17] Liu Y N,Wu K N,Zhao R. Bibliometric analysis of research on soil health from 1999 to 2018[J]. Journal of Soils and Sediments,2020,20(3):1513—1525.
    [18] Zhang Y,Pu S Y,Lv X,et al. Global trends and prospects in microplastics research:A bibliometric analysis[J]. Journal of Hazardous Materials,2020,400:123110.
    [19] Mao G Z,Hu H Q,Liu X,et al. A bibliometric analysis of industrial wastewater treatments from 1998 to 2019[J]. Environmental Pollution,2021,275:115785.
    [20] Mao G Z,Huang N,Chen L,et al. Research on biomass energy and environment from the past to the future:A bibliometric analysis[J]. Science of the Total Environment,2018,635:1081—1090.
    [21] Liu X M,Zhao J,Xu J M. Research on immobilization of heavy metals in contaminated agricultural soils—Bibliometric analysis based on Web of Science database[J]. Acta Pedologica Sinica,2021,58(2):445—455.[刘杏梅,赵健,徐建明. 污染农田土壤的重金属钝化技术研究——基于Web of Science数据库的计量分析[J]. 土壤学报,2021,58(2):445—455.]
    [22] Chen R R,Zhu Y,Cao W X,et al. A bibliometric analysis of research on plant critical dilution curve conducted between 1985 and 2019[J]. European Journal of Agronomy,2021,123:126199.
    [23] Li T,Cui L Z,Xu Z H,et al. Quantitative analysis of the research trends and areas in grassland remote sensing:A scientometrics analysis of Web of Science from 1980 to 2020[J]. Remote Sensing,2021,13(7):1279.
    [24] The R Development Core Team. R:A language and environment for statistical computing[EB/OL]. https://www.R-project.org.
    [25] Wu H Q,Zhang B G,Li Q,et al. Bibliometric analysis for factors of influencing agricultural soil N2O emission based on Web of Science[J]. Chinese Journal of Soil Science,2021,52(1):221—232.[吴汉卿,张宝贵,李强,等. 基于Web of Science对农业土壤N2O排放影响因素研究的文献计量分析[J]. 土壤通报,2021,52(1):221—232.]
    [26] Wu H Q,Zhang B G,Wang X X,et al. The method of literature retrieval via biliometric analysis:Taking soil ammonia volatilization as an example[J]. Chinese Agricultural Science Bulletin,2021,37(1):147—157.[吴汉卿,张宝贵,王学霞,等. 文献计量分析在快速检索文献中的应用——以土壤氨挥发为例[J]. 中国农学通报,2021,37(1):147—157.]
    [27] Opsahl T,Agneessens F,Skvoretz J. Node centrality in weighted networks:Generalizing degree and shortest paths[J]. Social Networks,2010,32(3):245—251.
    [28] Cuccurullo C,Aria M,Sarto F. Foundations and trends in performance management. A twenty-five years bibliometric analysis in business and public administration domains[J]. Scientometrics,2016,108(2):595—611.
    [29] Garfield E. Historiographic mapping of knowledge domains literature[J]. Journal of Information Science,2004,30(2):119—145.
    [30] Wang Z J,Wang S,Liu Y Y,et al. The applications of metagenomics in the detection of environmental microbes involving in nitrogen cycle[J]. Biotechnology Bulletin,2018,34(1):1—14.[王朱珺,王尚,刘洋荧,等. 宏基因组技术在氮循环功能微生物分子检测研究中的应用[J]. 生物技术通报,2018,34(1):1—14.]
    [31] Poly F,Monrozier L J,Bally R. Improvement in the RFLP procedure for studying the diversity of nifH genes in communities of nitrogen fixers in soil[J]. Research in Microbiology,2001,152(1):95—103.
    [32] Young J P W,Crossman L C,Johnston A W B,et al. The genome of Rhizobium leguminosarum has recognizable core and accessory components[J]. Genome Biology,2006,7(4):R34.
    [33] Gubry-Rangin C,Nicol G W,Prosser J I. Archaea rather than bacteria control nitrification in two agricultural acidic soils[J]. FEMS Microbiology Ecology,2010,74(3):566—574.
    [34] Harter J,Krause H M,Schuettler S,et al. Linking N2O emissions from biochar-amended soil to the structure and function of the N-cycling microbial community[J]. The ISME Journal,2014,8(3):660—674.
    [35] Tourna M,Freitag T E,Nicol G W,et al. Growth,activity and temperature responses of ammonia-oxidizing Archaea and bacteria in soil microcosms[J]. Environmental Microbiology,2008,10(5):1357—1364.
    [36] Daims H,Lebedeva E V,Pjevac P,et al. Complete nitrification by Nitrospira bacteria[J]. Nature,2015,528(7583):504—509.
    [37] Philippot L,Spor A,Hénault C,et al. Loss in microbial diversity affects nitrogen cycling in soil[J]. The ISME Journal,2013,7(8):1609—1619.
    [38] Jones C M,Graf D R H,Bru D,et al. The unaccounted yet abundant nitrous oxide-reducing microbial community:A potential nitrous oxide sink[J]. The ISME Journal,2013,7(2):417—426.
    [39] Forsberg K J,Patel S,Gibson M K,et al. Bacterial phylogeny structures soil resistomes across habitats[J]. Nature,2014,509(7502):612—616.
    [40] Fierer N,Lauber C L,Ramirez K S,et al. Comparative metagenomic,phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients[J]. The ISME Journal,2012,6(5):1007—1017.
    [41] Leff J W,Jones S E,Prober S M,et al. Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe[J]. Proceedings of the National Academy of Sciences of the United States of America,2015,112(35):10967—10972.
    [42] Yergeau E,Bokhorst S,Kang S,et al. Shifts in soil microorganisms in response to warming are consistent across a range of Antarctic environments[J]. The ISME Journal,2012,6(3):692—702.
    [43] Zhou J Z,Deng Y,Luo F,et al. Phylogenetic molecular ecological network of soil microbial communities in response to elevated CO2[J]. mBio,2011,2(4):e00122—11.
    [44] Mackelprang R,Waldrop M P,DeAngelis K M,et al. Metagenomic analysis of a permafrost microbial community reveals a rapid response to thaw[J]. Nature,2011,480(7377):368—371.
    [45] Stone M M,Kan J J,Plante A F. Parent material and vegetation influence bacterial community structure and nitrogen functional genes along deep tropical soil profiles at the Luquillo Critical Zone Observatory[J]. Soil Biology & Biochemistry,2015,80:273—282.
    [46] Su J Q,Ding L J,Xue K,et al. Long-term balanced fertilization increases the soil microbial functional diversity in a phosphorus-limited paddy soil[J]. Molecular Ecology,2015,24(1):136—150.
    [47] Yergeau E,Kang S,He Z L,et al. Functional microarray analysis of nitrogen and carbon cycling genes across an Antarctic latitudinal transect[J]. The ISME Journal,2007,1(2):163—179.
    [48] Liu F T,Kou D,Chen Y L,et al. Altered microbial structure and function after thermokarst formation[J]. Global Change Biology,2021,27(4):823—835.
    [49] Patra A K,Abbadie L,Clays-Josserand A,et al. Effects of management regime and plant species on the enzyme activity and genetic structure of N-fixing,denitrifying and nitrifying bacterial communities in grassland soils[J]. Environmental Microbiology,2006,8(6):1005—1016.
    [50] Wakelin S A,Colloff M J,Harvey P R,et al. The effects of stubble retention and nitrogen application on soil microbial community structure and functional gene abundance under irrigated maize[J]. FEMS Microbiology Ecology,2007,59(3):661—670.
    [51] Hsu S F,Buckley D H. Evidence for the functional significance of diazotroph community structure in soil[J]. The ISME Journal,2009,3(1):124—136.
    [52] Wallenstein M D,Vilgalys R J. Quantitative analyses of nitrogen cycling genes in soils[J]. Pedobiologia,2005,49(6):665—672.
    [53] Yoshida M,Ishii S,Otsuka S,et al. Temporal shifts in diversity and quantity of nirS and nirK in a rice paddy field soil[J]. Soil Biology & Biochemistry,2009,41(10):2044—2051.
    [54] Morales S E,Cosart T,Holben W E. Bacterial gene abundances as indicators of greenhouse gas emission in soils[J]. The ISME Journal,2010,4(6):799—808.
    [55] Rasche F,Knapp D,Kaiser C,et al. Seasonality and resource availability control bacterial and archaeal communities in soils of a temperate beech forest[J]. The ISME Journal,2011,5(3):389—402.
    [56] Graham E B,Wieder W R,Leff J W,et al. Do we need to understand microbial communities to predict ecosystem function? A comparison of statistical models of nitrogen cycling processes[J]. Soil Biology & Biochemistry,2014,68:279—282.
    [57] Liu Y Y,Wang S,Li S Z,et al. Advances in molecular ecology on microbial functional genes of carbon cycle[J]. Microbiology China,2017,44(7):1676—1689.[刘洋荧,王尚,厉舒祯,等. 基于功能基因的微生物碳循环分子生态学研究进展[J]. 微生物学通报,2017,44(7):1676—1689.]
    [58] Zhang J,Lin X G,Yin R. Advances in functional gene diversity of microorganism in relation to soil nitrogen cycling[J]. Chinese Journal of Eco-Agriculture,2009,17(5):1029—1034.[张晶,林先贵,尹睿. 参与土壤氮素循环的微生物功能基因多样性研究进展[J]. 中国生态农业学报,2009,17(5):1029—1034.]
    [59] Zhang J,Zhang H W,Li X Y,et al. Soil microbial ecological process and microbial functional gene diversity[J]. Chinese Journal of Applied Ecology,2006,17(6):1129—1132.[张晶,张惠文,李新宇,等. 土壤微生物生态过程与微生物功能基因多样性[J]. 应用生态学报,2006,17(6):1129—1132.]
    [60] Ji H F,Wang Y. Advances in molecular approach applications in microbial ecology studies[J]. Acta Ecologica Sinica,2016,36(24):8234—8243.[姬洪飞,王颖. 分子生物学方法在环境微生物生态学中的应用研究进展[J]. 生态学报,2016,36(24):8234—8243.]
    [61] Chen J,Sinsabaugh R L. Linking microbial functional gene abundance and soil extracellular enzyme activity:Implications for soil carbon dynamics[J]. Global Change Biology,2021,27(7):1322—1325.
    [62] Chen J,Luo Y Q,van Groenigen K J,et al. A keystone microbial enzyme for nitrogen control of soil carbon storage[J]. Science Advances,2018,4(8):eaaq1689.
    [63] Moore J A M,Anthony M A,Pec G J,et al. Fungal community structure and function shifts with atmospheric nitrogen deposition[J]. Global Change Biology,2021,27(7):1349—1364.
    [64] Guo X,Gao Q,Yuan M,et al. Gene-informed decomposition model predicts lower soil carbon loss due to persistent microbial adaptation to warming[J]. Nature Communications,2020,11:4897.
    [65] Li W J,Cai Y J,Zhu T B,et al. Release of nitrous oxide from soil aggregates and its microbial mechanism[J]. Acta Pedologica Sinica,2021,58(5):1132—1144.[李文娟,蔡延江,朱同彬,等. 土壤团聚体氧化亚氮排放及其微生物学机制研究进展[J]. 土壤学报,2021,58(5):1132—1144.]
    [66] Rillig M C,Ryo M,Lehmann A,et al. The role of multiple global change factors in driving soil functions and microbial biodiversity[J]. Science,2019,366(6467):886—890.
    [67] Chen Q L,Ding J,Zhu D,et al. Rare microbial taxa as the major drivers of ecosystem multifunctionality in long-term fertilized soils[J]. Soil Biology & Biochemistry,2020,141:107686.
    [68] Xiong C,He J Z,Singh B K,et al. Rare taxa maintain the stability of crop mycobiomes and ecosystem functions[J]. Environmental Microbiology,2021,23(4):1907—1924.
    [69] Jiao S,Xu Y Q,Zhang J,et al. Core microbiota in agricultural soils and their potential associations with nutrient cycling[J]. mSystems,2019,4(2):e00313—18.
    [70] Li Y Q,Ma J W,Yu Y,et al. Effects of multiple global change factors on soil microbial richness,diversity and functional gene abundances:A meta-analysis[J]. Science of the Total Environment,2022,815:152737.
    [71] Qin H L,Chen A L,Sheng R,et al. A review on the microbial regulation mechanism of N2O production and emission of rice paddy ecosystems[J]. Research of Agricultural Modernization,2018,39(6):922—929.[秦红灵,陈安磊,盛荣,等. 稻田生态系统氧化亚氮(N2O)排放微生物调控机制研究进展及展望[J]. 农业现代化研究,2018,39(6):922—929.]
    [72] Jiao S,Lu Y H. Abundant fungi adapt to broader environmental gradients than rare fungi in agricultural fields[J]. Global Change Biology,2020,26(8):4506—4520.
    [73] Deng Y L,Ruan Y J,Ma B,et al. Multi-omics analysis reveals niche and fitness differences in typical denitrification microbial aggregations[J]. Environment International,2019,132:105085.
    [74] Chu H Y,Gao G F,Ma Y Y,et al. Soil microbial biogeography in a changing world:Recent advances and future perspectives[J]. mSystems,2020,5(2):e00803—19.
    [75] Liu Z,Deng Z,He G,et al. Challenges and opportunities for carbon neutrality in China[J]. Nature Reviews Earth & Environment,2022,3(2):141—155.
    [76] Wang F,Harindintwali J D,Yuan Z Z,et al. Technologies and perspectives for achieving carbon neutrality[J]. The Innovation,2021,2(4):100180.
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

吴汉卿,阮楚晋,万炜,李胜龙,裴丁仪,韩苗,陈国炜,刘莹,朱&#;,王钢.基于知识图谱分析的土壤氮循环功能基因研究进展[J].土壤学报,2023,60(1):7-22. DOI:10.11766/trxb202110270580 WU Hanqing, RUAN Chujin, WAN Wei, LI Shenglong, PEI Dingyi, HAN Miao, CHEN Guowei, LIU Ying, ZHU Kun, WANG Gang. Progress of Functional Genes Related to Soil Nitrogen Cycling Based on Knowledge Mapping[J]. Acta Pedologica Sinica,2023,60(1):7-22.

复制
分享
文章指标
  • 点击次数:1611
  • 下载次数: 2471
  • HTML阅读次数: 5342
  • 引用次数: 0
历史
  • 收稿日期:2021-10-27
  • 最后修改日期:2022-03-04
  • 录用日期:2022-05-18
  • 在线发布日期: 2022-05-23
文章二维码