植物促生菌的功能及在可持续农业中的应用
作者:
基金项目:

中央高校基本科研业务费专项资金资助项目(SWU020010)、重庆市自然科学基金面上项目(cstc2021jcyj-msxmX0827)、重庆市留学人员回国创业创新支持计划(创新类重点)(cx2021001)、重庆市教委科学技术研究计划项目(重点)(KJZD-K202200204)资助


Functions of Plant Growth-Promoting Bacteria and Their Application in Sustainable Agriculture
Author:
Fund Project:

Supported by the Fundamental Research Funds for the Central Universities of China (No. SWU 020010), the Natural Science Foundation of Chongqing, China (No. cstc2021jcyj-msxmX0827), the Returned Overseas Students’ Entrepreneurship and Innovation Support Program of Chongqing, China (No. cx2021001) and the Science and Technology Research Program of Chongqing Municipal Education Commission, China (No. KJZD-K202200204)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [88]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    全球气候变化以及人口增长加剧了农业生产中各种生物(如病原菌)和非生物(如干旱、盐渍、高温等)胁迫,并通过影响植物形态、生理生化特征和代谢功能等阻碍植物的生长、发育和生产力提升,最终影响农作物的产量和品质并严重威胁着农业的可持续发展。随着现代农业的大力发展,有益微生物因其能够改良土壤质量、提高土壤肥力、提升农作物抗胁迫性能和增产提质的功效显著而备受关注。简要概述了植物促生菌(Plant Growth-Promoting Bacteria,PGPB)的种类和施用效应,重点剖析了PGPB产生植物生长激素、固氮作用、加强对营养物质的吸收利用(溶磷、解钾和合成铁载体)、缓解生物和非生物胁迫以及调节植物根系构型和根际微生物群落结构等促生和抗胁迫机制,系统梳理了近年来运用于现代农业中的PGPB菌剂制备和施用方式的前沿科学技术,并进一步讨论了PGPB在未来农业生产中的应用前景以及研究方向。

    Abstract:

    Global climate change and population growth exacerbate various biotic (e.g., infection of pathogens) and abiotic (e.g., drought, salinity, high temperature, etc.) stress in agricultural production, which impede plant growth, development and productivity by affecting plant morphology, physiological and biochemical characteristics as well as metabolic functions. Consequently, this affects crop yield and quality and seriously threatens agricultural sustainability. With the vigorous development of modern agriculture, beneficial microorganisms have attracted much attention due to their ability to improve soil quality and fertility, stress tolerance in crops, and their yield and quality. Besides, the proper use of microbial inoculum in agricultural production can achieve the effects of reducing the amounts of agrochemicals, reducing production costs, improving the quality of agricultural products, and protecting the ecological environment, which is also in line with the agricultural production goal of harmonious coexistence between humans and nature. In this review, the types and application effects of plant growth-promoting bacteria (PGPB) were briefly summarized, with emphasis on the analysis of PGPB's ability to produce phytohormone, fix nitrogen, facilitate the absorption and utilization of nutrients (phosphate and potassium solubilization and siderophore production), alleviate biotic and abiotic stress, regulate plant root architecture and rhizosphere microbial community structure. Moreover, the frontier science and technology of PGPB inoculum preparation and application methods in modern agriculture in recent years were systematically explored, and the application prospect and research direction of PGPB in future agricultural production were further discussed.

    参考文献
    [1] Kumar A,Patel J S,Meena V S,et al. Recent advances of PGPR based approaches for stress tolerance in plants for sustainable agriculture[J]. Biocatalysis and Agricultural Biotechnology,2019,20:101271.
    [2] Ahmad M,Wang X K,Hilger T H,et al. Evaluating biochar-microbe synergies for improved growth,yield of maize,and post-harvest soil characteristics in a semi-arid climate[J]. Agronomy,2020,10(7):1055.
    [3] Glaser B,Lehr V I. Biochar effects on phosphorus availability in agricultural soils:A meta-analysis[J]. Scientific Reports,2019,9(1):9338.
    [4] Lü Y. Analysis of agricultural resources and sustainable development of agriculture[J]. South China Agriculture,2020,14(29):143-144.[吕悦. 农业资源与农业可持续发展探析[J]. 南方农业,2020,14(29):143-144.]
    [5] Kumar S M,Reddy G C,Phogat M,et al. Role of bio- fertilizers towards sustainable agricultural development:A review[J]. Journal of Pharmacognosy and Phytochemistry,2018,7(6):1915-1921.
    [6] Hashem A,Tabassum B,Abd_Allah E F. Bacillus subtilis:A plant-growth promoting rhizobacterium that also impacts biotic stress[J]. Saudi Journal of Biological Sciences,2019,26(6):1291-1297.
    [7] Gouda S,Kerry R G,Das G,et al. Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture[J]. Microbiological Research,2018,206:131-140.
    [8] Ma Y,Rajkumar M,Zhang C,et al. Beneficial role of bacterial endophytes in heavy metal phytoremediation[J]. Journal of Environmental Management,2016,174:14-25.
    [9] Ma Y,Luo Y M,Teng Y,et al. Effects of endophytic bacteria enhancing phytoremediation of heavy metal contaminated soils[J]. Acta Pedologica Sinica,2013,50(1):195-202.[马莹,骆永明,滕应,等. 内生细菌强化重金属污染土壤植物修复研究进展[J]. 土壤学报,2013,50(1):195-202.]
    [10] Ma Y,Dias M C,Freitas H. Drought and salinity stress responses and microbe-induced tolerance in plants[J]. Frontiers in Plant Science,2020,11:591911.
    [11] Kang S M,Shahzad R,Bilal S,et al. Indole-3-acetic-acid and ACC deaminase producing Leclercia adecarboxylata MO1 improves Solanum lycopersicum L. growth and salinity stress tolerance by endogenous secondary metabolites regulation[J]. BMC Microbiology,2019,19(1):80.
    [12] Souza M S T,Baura V A,Santos S A,et al. Azospirillum spp. from native forage grasses in Brazilian Pantanal floodplain:Biodiversity and plant growth promotion potential[J]. World Journal of Microbiology and Biotechnology,2017,33(4):81.
    [13] Kamínek M. Tracking the story of cytokinin research[J]. Journal of Plant Growth Regulation,2015,34(4):723-739.
    [14] Liu Y,Wang H,Sun X L,et al. Study on mechanisms of colonization of nitrogen-fixing PGPB,Klebsiella pneumoniae NG14 on the root surface of rice and the formation of biofilm[J]. Current Microbiology,2011,62(4):1113-1122.
    [15] Aremu A O,Fawole O A,Makunga N P,et al. Applications of cytokinins in horticultural fruit crops:Trends and future prospects[J]. Biomolecules,2020,10(9):1222.
    [16] Chen S,Wang X J,Tan G F,et al. Gibberellin and the plant growth retardant Paclobutrazol altered fruit shape and ripening in tomato[J]. Protoplasma,2020,257(3):853-861.
    [17] Joo G J,Kim Y M,Kim J T,et al. Gibberellins-producing rhizobacteria increase endogenous gibberellins content and promote growth of red peppers[J]. Journal of Microbiology,2005,43(6):510-515.
    [18] Nascimento F X,Rossi M J,Glick B R. Ethylene and 1-aminocyclopropane-1-carboxylate (ACC) in plant-bacterial interactions[J]. Frontiers in Plant Science,2018,9:114.
    [19] Shahzad R,Khan A L,Bilal S,et al. Inoculation of abscisic acid-producing endophytic bacteria enhances salinity stress tolerance in Oryza sativa[J]. Environmental and Experimental Botany,2017,136:68-77.
    [20] Hewage K A H,Yang J F,Wang D,et al. Chemical manipulation of abscisic acid signaling:A new approach to abiotic and biotic stress management in agriculture[J]. Advanced Science,2020,7(18):2001265.
    [21] Long C Y,Gu H H,Wang Z X,et al. Effects of exogenous abscisic acid on the photosynthesis and chlorophy ll fluorescence parameters of spinach under high temperature stress[J]. Journal of Sichuan Agricultural University,2017,35(1):24-30.[隆春艳,古洪辉,汪正香,等. 外源脱落酸对高温胁迫下菠菜光合与叶绿素荧光参数的影响[J]. 四川农业大学学报,2017,35(1):24-30.]
    [22] Wang J P,Huang R Z,Zhu L Q,et al. Effects of different fertility improvement measures on microbial community structures in biological red soil crusts of woodland[J]. Acta Pedologica Sinica,2023,60(1):DOI:10.11766/trxb202108130311.[王金平,黄荣珍,朱丽琴,等. 肥力提升措施对林地红壤生物结皮层微生物群落结构的影响[J]. 土壤学报,2023,60(1):DOI:10.11766/trxb202108130311]
    [23] Xiong Y,Zheng L,Shen R F,et al. Effects of nitrogen deficiency on microbial community structure in rhizosphere soil of wheat[J]. Acta Pedologica Sinica,2022,59(1):218-230.[熊艺,郑璐,沈仁芳,等. 缺氮胁迫对小麦根际土壤微生物群落结构特征的影响[J]. 土壤学报,2022,59(1):218-230.]
    [24] Ke X B. Key microbial communities and functions of nitrogen transformation in agricultural soils[D]. Beijing:Biotechnology Research Institude,Chinese Academy of Agricultural Sciences,2016.[柯秀彬. 农业土壤中氮素转化关键微生物群落及功能[D]. 北京:中国农业科学院生物技术研究所,2016.]
    [25] Dong R,Cao Y R. Research progress on the immune regulation of symbiotic nitrogen fixation between legumes and rhizobia[J]. Biotechnology Bulletin,2019,35(10):25-33.[董汝,曹扬荣. 豆科植物-根瘤菌共生固氮的免疫调控机制[J]. 生物技术通报,2019,35(10):25-33.]
    [26] Nawaz A,Shahbaz M,Asadullah,et al. Potential of salt tolerant PGPR in growth and yield augmentation of wheat (Triticum aestivum L.) under saline conditions[J]. Frontiers in Microbiology,2020,11:02019.
    [27] Haque M M,Mosharaf M K,Khatun M,et al. Biofilm producing rhizobacteria with multiple plant growth- promoting traits promote growth of tomato under water-deficit stress[J]. Frontiers in Microbiology,2020,11:542053.
    [28] Liu Y,Gao J,Bai Z H,et al. Unraveling mechanisms and impact of microbial recruitment on oilseed rape (Brassica napus L.) and the rhizosphere mediated by plant growth-promoting rhizobacteria[J]. Microorganisms,2021,9(1):161.
    [29] Jiang H H,Li J Q,Chen G,et al. Phosphate solubilizing microorganisms and application progress in saline- alkaline soil[J]. Soils,2021,53(6):1125-1131.[姜焕焕,李嘉钦,陈刚,等. 解磷微生物及其在盐碱土中的应用研究进展[J]. 土壤,2021,53(6):1125-1131.]
    [30] Rawat P,Das S,Shankhdhar D,et al. Phosphate- solubilizing microorganisms:Mechanism and their role in phosphate solubilization and uptake[J]. Journal of Soil Science and Plant Nutrition,2021,21(1):49-68.
    [31] Suo Y K,Liu L H,Zhang L,et al. Research progress of potassium solubilization by potassium solubilizing bacteria[J]. Contemporary Chemical Industry,2021,50(4):924-929.[索雲凯,刘丽红,张雷,等. 解钾菌解钾作用研究进展[J]. 当代化工,2021,50(4):924-929.]
    [32] Geng L P,Fan J,Wang J Y,et al. Study on salt tolerance of functional microbes with ability to dissolve insoluble phosphate and potassium[J]. Journal of Soil and Water Conservation,2020,34(4):370-375.[耿丽平,范俊,王婧瑶,等. 解磷、钾功能性微生物耐盐效应研究[J]. 水土保持学报,2020,34(4):370-375.]
    [33] Lin Y,Si C C,Zhang H X. Research status of potassium-resolving microorganisms and its application and prospects in agricultural production[J]. Jiangsu Agricultural Sciences,2020,48(12):1-5.[林英,司春灿,章慧璇. 解钾微生物研究现状及其在农业生产中的应用和展望[J]. 江苏农业科学,2020,48(12):1-5.]
    [34] Rashid U,Yasmin H,Hassan M N,et al. Drought-tolerant Bacillus megaterium isolated from semi-arid conditions induces systemic tolerance of wheat under drought conditions[J]. Plant Cell Reports,2022,41(3):549-569.
    [35] Abd EI-Daim I,Bejai S,Meijer J. Bacillus velezensis 5113 induced metabolic and molecular reprogramming during abiotic stress tolerance in wheat[J]. Scientific Reports,2019,9(1):16282.
    [36] Ansari F A,Jabeen M,Ahmad I. Pseudomonas azotoformans FAP5,a novel biofilm-forming PGPR strain,alleviates drought stress in wheat plant[J]. International Journal of Environmental Science and Technology,2021,18(12):3855-3870.
    [37] Li X Z,Sun P,Zhang Y N,et al. A novel PGPR strain Kocuria rhizophila Y1 enhances salt stress in maize by regulating phytohormone levels,nutrient acquisition,redox potential,ion homeostasis,photosynthetic capacity and stress-responsive genes expression[J]. Environmental and Experimental Botany,2020,174:104023.
    [38] Szymańska S,Dabrowska G B,Tyburski J,et al. Boosting the Brassica napus L. tolerance to salinity by the halotolerant strain Pseudomonas stutzeri ISE12[J]. Environmental and Experimental Botany,2019,163:55-68.
    [39] Yang T J,Wang Y X,Wang J N,et al. Effects of different bioorganic fertilizers on tomato bacterial wilt and plant growth promotion[J]. Soils,2021,53(5):961-968.[杨天杰,王玉鑫,王佳宁,等. 不同基质生物有机肥防控番茄土传青枯病及促生效果研究[J]. 土壤,2021,53(5):961-968.]
    [40] He X,Zhang Q,Li C,et al. Screening of the pathogenic bacteria with siderophore-producing activity and the effect of intervention in iron uptake on its growth[J]. Plant Protection,2020,46(3):85-93.[何翔,张庆,李楚,等. 具铁载体活性病原细菌的筛选及铁摄取干预对其生长影响[J].植物保护,2020,46(3):85-93.]
    [41] Gargallo-Garriga A,Preece C,Sardans J,et al. Root exudate metabolomes change under drought and show limited capacity for recovery[J]. Scientific Reports,2018,8(1):12696.
    [42] Freitas M A,Medeiros F H,Carvalho S P,et al. Augmenting iron accumulation in cassava by the beneficial soil bacterium Bacillus subtilis (GBO3)[J]. Frontiers in Plant Science,2015,6:596.
    [43] He H Y,Huang S L,Li D L,et al. Screening and identification of strains producing agricultural antibiotics and preliminary study on active products[J]. Feed Research,2021,44(18):67-72.[何海燕,黄舒琳,李东霖,等. 产农用抗生素的菌种筛选鉴定及活性产物的初步研究[J]. 饲料研究,2021,44(18):67-72.]
    [44] Wu Y C,Zhou J Y,Li C G,et al. Antifungal and plant growth promotion activity of volatile organic compounds produced by Bacillus amyloliquefaciens[J]. MicrobiologyOpen,2019,8(8):e813.
    [45] Mihalache G,Balaes T,Gostin I,et al. Lipopeptides produced by Bacillus subtilis as new biocontrol products against fusariosis in ornamental plants[J]. Environmental Science and Pollution Research,2018,25(30):29784-29793.
    [46] Ma Y,Luo Y M,Teng Y,et al. Plant growth promoting rhizobacteria and their role in phytoremediation of heavy metal contaminated soils[J]. Acta Pedologica Sinica,2013,50(5):1021-1031.[马莹,骆永明,滕应,等. 根际促生菌及其在污染土壤植物修复中的应用[J]. 土壤学报,2013,50(5):1021-1031.]
    [47] Liu Y L,Yu Y,Lei H X,et al. Research progress on mechanism of bio-control factors for plant diseases and its application[J]. China Plant Protection,2019,39(3):23-28.[刘亚苓,于营,雷慧霞,等. 植物病害生防因子的作用机制及应用进展[J]. 中国植保导刊,2019,39(3):23-28.]
    [48] Tahir H A S,Gu Q,Wu H J,et al. Effect of volatile compounds produced by Ralstonia solanacearum on plant growth promoting and systemic resistance inducing potential of Bacillus volatiles[J]. BMC Plant Biology,2017,17(1):133.
    [49] Cao Y,Pi H L,Chandrangsu P,et al. Antagonism of two plant-growth promoting Bacillus velezensis isolates against Ralstonia solanacearum and Fusarium oxysporum[J]. Scientific Reports,2018,8(1):4360.
    [50] Sang M K,Jeong J J,Kim J,et al. Growth promotion and root colonisation in pepper plants by phosphate- solubilising Chryseobacterium sp. strain ISE14 that suppresses Phytophthora blight[J]. Annals of Applied Biology,2018,172(2):208-223.
    [51] Jiang C H,Liao M J,Wang H K,et al. Bacillus velezensis,a potential and efficient biocontrol agent in control of pepper gray mold caused by Botrytis cinerea[J]. Biological Control,2018,126:147-157.
    [52] Fu Y S,Li Y C,Xu Z H,et al. Research progressing in signals and molecular mechanisms of plant growth- promoting rhizobacteria to regulate plant root development[J]. Biotechnology Bulletin,2020,36(9):42-48.[付严松,李宇聪,徐志辉,等. 根际促生菌调控植物根系发育的信号与分子机制研究进展[J]. 生物技术通报,2020,36(9):42-48.]
    [53] Zúñiga A,Poupin M J,Donoso R,et al. Quorum sensing and indole-3-acetic acid degradation play a role in colonization and plant growth promotion of Arabidopsis thaliana by Burkholderia phytofirmans PsJN[J]. Molecular Plant-Microbe Interactions,2013,26(5):546-553.
    [54] Raya-González J,Velázquez-Becerra C,Barrera-Ortiz S,et al. N,N-dimethyl hexadecylamine and related amines regulate root morphogenesis via jasmonic acid signaling in Arabidopsis thaliana[J]. Protoplasma,2017,254(3),1399-1410.
    [55] Liu C,Huang W M,Han L Z. Effect of PGPR compound flora on peanut seedling growth and rhizosphere soil microorganism[J]. Southwest China Journal of Agricultural Sciences,2019,32(10):2367-2372.[刘畅,黄文茂,韩丽珍. PGPR复合菌系对花生生长及根际土壤微生物的影响[J]. 西南农业学报,2019,32(10):2367-2372.]
    [56] Wang J J,Li Q Q,Xu S,et al. Traits-based integration of multi-species inoculants facilitates shifts of indigenous soil bacterial community[J]. Frontiers in Microbiology,2018,9:1692.
    [57] Liu H J,Xiong W,Zhang R F,et al. Continuous application of different organic additives can suppress tomato disease by inducing the healthy rhizospheric microbiota through alterations to the bulk soil microflora[J]. Plant and Soil,2018,423(1):229-240.
    [58] Singh U B,Malviya D,Singh S,et al. Salt-tolerant compatible microbial inoculants modulate physio-biochemical responses enhance plant growth,Zn biofortification and yield of wheat grown in saline-sodic soil[J]. International Journal of Environmental Research and Public Health,2021,18(18):9936.
    [59] Lobo C B,Tomás M S J,Viruel E,et al. Development of low-cost formulations of plant growth-promoting bacteria to be used as inoculants in beneficial agricultural technologies[J]. Microbiological Research,2019,219:12-25.
    [60] Li J T,Yang H,Chen Y,et al. Development and preliminary application of compound bacterial agent for degrading carbendazim and acetamiprid residues[J]. Soils,2022,54(3):646-652.[李锦涛,杨涵,陈洋,等. 降解多菌灵和啶虫脒残留的复合菌剂研发及初步应用[J]. 土壤,2022,54(3):646-652.]
    [61] Wang J Z,Zhang Q,Gao Z X,et al. Effects of two microbial agents on yield,quality and rhizosphere environment of autumn cucumber cultured in organic substrate[J]. Scientia Agricultura Sinica,2021,54(14):3077-3087.[王君正,张琪,高子星,等. 两种微生物菌剂对有机基质袋培秋黄瓜产量、品质及根际环境的影响[J]. 中国农业科学,2021,54(14):3077-3087.]
    [62] Molina-Romero D,Baez A,Quintero-Hernández V,et al. Compatible bacterial mixture,tolerant to desiccation,improves maize plant growth[J]. PLoS One,2017,12(11):e0187913.
    [63] Yuan H,He P F,Wu Y X,et al. Effects of the beneficial bacteria promoting maize growth under salt stress[J]. Journal of Maize Sciences,2019,27(1):69-74.[袁海,何鹏飞,吴毅歆,等. 盐胁迫下益生菌对玉米的促生效应研究[J]. 玉米科学,2019,27(1):69-74.]
    [64] Mondello F J,Turcich M P,Lobos J H,et al. Identification and modification of biphenyl dioxygenase sequences that determine the specificity of polychlorinated biphenyl degradation[J]. Applied and Environmental Microbiology,1997,63(8):3096-3103.
    [65] Yang X L,Li J H,Yao T,et al. Optimization of fermentation conditions of three growth promoting strains and evaluation of effects on highland barley[J]. Acta Agrestia Sinica,2022,30(1):212-219.[杨晓蕾,李建宏,姚拓,等. 复合促生菌剂发酵条件优化及其对青稞促生效果评价[J]. 草地学报,2022,30(1):212-219.]
    [66] Ajeng A A,Abdullah R,Ling T C,et al. Bioformulation of biochar as a potential inoculant carrier for sustainable agriculture[J]. Environmental Technology & Innovation,2020,20:101168.
    [67] EI-Hadidy A. Performance of some new bioformulations against tomato fusarium wilt[J]. Egyptian Journal of Desert Research,2019,69(1):1-19.
    [68] Ma Y. Seed coating with beneficial microorganisms for precision agriculture[J]. Biotechnology Advances,2019,37(7):107423.
    [69] Wang X F,Mei X L,Huang D P,et al. Effects of probiotics with biochar as carrier inhibiting tomato soil-borne bacterial wilt[J]. Acta Pedologica Sinica,2022,59(2):536-544.[王孝芳,梅新兰,黄大鹏,等. 生物质炭载体联合有益菌防控番茄土传青枯病的效果研究[J]. 土壤学报,2022,59(2):536-544.]
    [70] Fariba F,Roohallah F R,Pejman K. Survivability and controlled release of alginate-microencapsulated Pseudomonas fluorescens VUPF506 and their effects on biocontrol of Rhizoctonia solani on potato[J]. International Journal of Biological Macromolecules,2021,183:627-634.
    [71] El-Fattah D A A,Eweda W E,Zayed M S,et al. Effect of carrier materials,sterilization method,and storage temperature on survival and biological activities of Azotobacter chroococcum inoculant[J]. Annals of Agricultural Sciences,2013,58(2):111-188.
    [72] Lopes M J D S,Dias-Filho M B,Gurgel E S C. Successful plant growth-promoting microbes:Inoculation methods and abiotic factors[J]. Frontiers in Sustainable Food Systems,2021,5:606454.
    [73] Hernández-Montiel L G,Chiquito-Contreras C J,Murillo-Amador B,et al. Efficiency of two inoculation methods of Pseudomonas putida on growth and yield of tomato plants[J]. Journal of Soil Science and Plant Nutrition,2017,17(4):1003-1012.
    [74] Zafar-Ul-Hye M,Tahzeeb-Ul-Hassan M,Abid M,et al. Potential role of compost mixed biochar with rhizobacteria in mitigating lead toxicity in spinach[J]. Scientific Reports,2020,10(1):12159.
    [75] Misra S,Dixit V K,Mishra S K,et al. Demonstrating the potential of abiotic stress-tolerant Jeotgalicoccus huakuii NBRI 13E for plant growth promotion and salt stress amelioration[J]. Annals of Microbiology,2019,69:419-434.
    [76] Ullah M A,Mahmood I A,Ali A,et al. Effect of inoculation methods of biozote-max (plant growth promoting rhizobacteria-PGPR) on growth and yield of rice under naturally salt-affected soil[J]. Research in Plant Biology,2017,7:24-26.
    [77] Bhattacharya A,Giri V P,Singh S P,et al. Intervention of bio-protective endophyte Bacillus tequilensis enhance physiological strength of tomato during Fusarium wilt infection[J]. Biological Control,2019,139:104074.
    [78] Guo Q,Li Y,Lou Y,et al. Bacillus amyloliquefaciens Ba13 induces plant systemic resistance and improves rhizosphere microecology against tomato yellow leaf curl virus disease[J]. Applied Soil Ecology,2019,137:154-166.
    [79] Sang M K,Chun S,Kim K D. Biological control of phytophthora blight of pepper by antagonistic rhizobacteria selected from a sequential screening procedure[J]. Biological Control,2008,46(3):424-433.
    [80] Chaudhary T,Gera R,Shukla P. Deciphering the potential of Rhizobium pusense MB-17a,a plant growth-promoting root endophyte,and functional annotation of the genes involved in the metabolic pathway[J]. Frontiers in Bioengineering and Biotechnology,2021,8(1):617034.
    [81] Russo M L,Scorsetti A C,Vianna M F,et al. Effects of endophytic Beauveria bassiana (Ascomycota:Hypocreales) on biological,reproductive parameters and food preference of the soybean pest Helicoverpa geloto-poeon[J]. Journal of King Saud University- Science,2019,31:1077-1082.
    [82] Báez-Vallejo N,Camarena-Pozos D A,Monribot- Villanueva J L,et al. Forest tree associated bacteria for potential biological control of Fusarium solani and of Fusarium kuroshium,causal agent of Fusarium dieback[J]. Microbiological Research,2020,235:126440.
    [83] Farahat M G,Tahany,Rahman M,et al. Biological control of tomato bacterial wilt disease by endophytic Pseudomonas fluorescens and Bacillus subtilis[J]. Egyptian Journal of Botany,2016,56(2):543-558.
    [84] Mohammed A F,Oloyede A R,Odeseye A O. Biological control of bacterial wilt of tomato caused by Ralstonia solanacearum using Pseudomonas species isolated from the rhizosphere of tomato plants[J]. Archives of Phytopathology and Plant Protection,2020,53(1/2):1-16.
    [85] Vassilev N,Vassileva M,Lopez A,et al. Unexploited potential of some biotechnological techniques for biofertilizer production and formulation[J]. Applied Microbiology and Biotechnology,2015,99(12):4983-4996.
    [86] Takeshi K,Sumika H,Yoshitake S,et al. PGPR improves yield of strawberry species under less-fertilized conditions[J]. Environmental Control in Biology,2017,55(3):121-128.
    [87] Ali A M,Awad M Y M,Hegab S A,et al. Effect of potassium solubilizing bacteria (Bacillus cereus) on growth and yield of potato[J]. Journal of Plant Nutrition,2021,44(3):411-420.
    [88] Altuntas A. Comparative study on the effects of different conventional,organic and bio-fertilizers on broccoli yield and quality[J]. Applied Ecology and Environmental Research,2018,16:1595-1608.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

马莹,曹梦圆,石孝均,李振轮,骆永明.植物促生菌的功能及在可持续农业中的应用[J].土壤学报,2023,60(6):1555-1568. DOI:10.11766/trxb202203160112 MA Ying, CAO Mengyuan, SHI Xiaojun, LI Zhenlun, LUO Yongming. Functions of Plant Growth-Promoting Bacteria and Their Application in Sustainable Agriculture[J]. Acta Pedologica Sinica,2023,60(6):1555-1568.

复制
分享
文章指标
  • 点击次数:1660
  • 下载次数: 3175
  • HTML阅读次数: 3795
  • 引用次数: 0
历史
  • 收稿日期:2022-03-16
  • 最后修改日期:2022-09-29
  • 录用日期:2022-11-08
  • 在线发布日期: 2022-11-11
  • 出版日期: 2023-11-28
文章二维码