绿色智能肥料:从原理创新到产业化实现
作者:
中图分类号:

S14

基金项目:

云南省科技厅项目"云南现代农业绿色技术创新平台(2021090053)"、云天化股份有限公司项目"绿色智能坚果专用复合肥产品开发及应用(YTH-4320-WB-FW-2021-031303-00)"和北京高校高精尖学科建设项目共同资助


Green Intelligent Fertilizer: From Interdisciplinary Innovation to Industrialization Realization
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [71]
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    肥料作为粮食安全的物质基础,在支撑我国粮食产量、农产品品质、人类营养健康等方面发挥了至关重要的作用。迈入新时代,在全国社会经济特别是工农业绿色转型的大好形势下,肥料创新面临着协同实现粮食安全、资源高效、环境友好、营养健康、绿色低碳的巨大挑战。为破解这一重大难题,本文提出了绿色智能肥料概念与产业化途径,通过系统阐述土壤-植物-微生物-肥料-环境之间的协同原理,构建了匹配土壤、匹配作物、匹配气候环境条件的绿色智能肥料创制新学术思路,提出了绿色智能肥料的理论框架、关键科学问题、研发路径以及未来突破的重点,为多学科交叉创新、工农融合全产业链绿色发展的解决方案设计与实现提供借鉴,旨在推动我国化肥产业绿色转型升级,支撑农业绿色发展。

    Abstract:

    As the material basis of food security, fertilizer plays an important role in supporting grain yield, agricultural product quality and human nutrition and health. Stepping into the new era, under the great situation of the national social economy, especially the green transformation of industry and agriculture, fertilizer innovation is facing the great challenge of synergistic realization of multiple objectives including food security, resource efficiency, environmental friendliness, nutrition and health, green and low carbon. In order to solve this major problem, the concept and industrialization pathway of green intelligent fertilizer were put forward in this paper. Through systematically elaborating the interactive principle of soil, plant, microorganism, fertilizer and environment, this study put forward a new academic idea for creating green intelligent fertilizer that matches soil, crops and climate and environmental conditions, and proposed its theoretical framework, key scientific issues, research and development pathways and future breakthroughs of green intelligent fertilizer. This study can provide new insights and reference for the design and implementation of holistic solutions for the green development of the whole industrial chain of multi-disciplinary cross-innovation and integration of industry and agriculture, aiming at promoting the green transformation and upgrading of China's chemical fertilizer industry and ultimately supporting the green development of agriculture.

    参考文献
    [1] Scientific Panel on Responsible Plant Nutrition. A new paradigm for plant nutrition[EB/OL]. 2020.[2022-03-29]. https://www.sprpn.org/_files/ugd/3b83b9_cfeb9d2493cb44-96b22a41cac3358cd8.pdf.
    [2] Jiao X Q, Lyu Y, Wu X B, et al. Grain production versus resource and environmental costs:Towards increasing sustainability of nutrient use in China[J]. Journal of Experimental Botany, 2016, 67(17):4935-4949.
    [3] Shen J B, Zhu Q C, Jiao X Q, et al. Agriculture green development:A model for China and the world[J]. Frontiers of Agricultural Science and Engineering, 2020, 7(1):5-13.
    [4] Zhang F S, Huang C D, Zhang W F. Scientific understanding of chemical fertilizers:The"food"of food[M]. Beijing:China Agricultural University Press, 2021.[张福锁,黄成东,张卫峰.科学认识化肥:粮食的"粮食"[M].北京:中国农业大学出版社, 2021.]
    [5] Zhang W F, Yi J J, Zhang F S. Annual Report of China Fertilizer Development Research 2016[M]. Beijing:China Agricultural University Press, 2017.[张卫峰,易俊杰,张福锁.中国肥料发展研究报告2016[M].北京:中国农业大学出版社, 2017.]
    [6] Ministry of Ecology and Environment of China, National Bureau of Statistics of China, Ministry of Agriculture and Rural Affairs of China. The Second National Pollution Source Census Bulletin[R/OL].(2020-06-10)[2022-03-29]. http://www.gov.cn/xinwen/2020-06/10/content_5518391.htm.[生态环境部,国家统计局,农业农村部.第二次全国污染源普查公报.(2020-06-10)[2022-03-29]. http://www.gov.cn/xinwen/2020-06/10/content_5518391.htm.]
    [7] Calabi-Floody M, Medina J, Rumpel C, et al. Smart fertilizers as a strategy for sustainable agriculture[J]. Advances in Agronomy, 2018, 147:119-157.
    [8] Zhang F S. Innovating fertilizer industry towards a new era of green intelligent fertilizer. The 22nd Domestic High-Concentration Phosphate Compound Fertilizer Production and Marketing Conference Series Forum-Keynote presentation of "Fertilizer Industry Innovation and Development Forum in the Post-epidemic Period"[R]. Beijing:China Phosphate and Compound Fertilizer Industry Association. 2021-10-29.[张福锁.革新肥料产业,开启绿色智能肥料新时代.第22届国产高浓度磷复肥产销会系列论坛之——"后疫情时期肥料产业创新发展论坛"主旨报告[R].北京:中国磷复肥工业协会. 2021-10-29.]
    [9] Hou C H, Xu X C, Wang H B, et al. Establishment of green fertilizer industrial system and its scientific problems[J]. Chinese Science Bulletin, 2015, 60(36):3535-3542.[侯翠红,许秀成,王好斌,等.绿色肥料产业体系构建及其科学问题[J].科学通报, 2015, 60(36):3535-3542.]
    [10] Zhao Y F, Yin Y W. Key scientific problems on establishing green fertilizer ensurance system[J]. Chinese Science Bulletin, 2015, 60(36):3527-3534.[赵玉芬,尹应武.我国肥料使用中存在的问题及对策[J].科学通报, 2015, 60(36):3527-3534.]
    [11] Zhao Y F, Zhao B Q,Hou C H,et al. Adapting to the new demand of agriculture and constructing the innovation system of fertilizer field in China-Academician consulting report of the Chinese Academy of Sciences[J]. Journal of Plant Nutrition and Fertilizers, 2018, 24(2):561-568.[赵玉芬,赵秉强,侯翠红,等.适应农业新需求,构建我国肥料领域创新体系——中国科学院学部咨询报告[J].植物营养与肥料学报, 2018, 24(2):561-568.]
    [12] Zhang Q S, Chu Y Y, Xue Y F, et al. Outlook of China's agriculture transforming from smallholder operation to sustainable production[J]. Global Food Security, 2020, 26:100444.
    [13] Liu Z, Ying H, Chen M, et al. Optimization of China's maize and soy production can ensure feed sufficiency at lower nitrogen and carbon footprints[J]. Nature Food, 2021, 2(6):426-433.
    [14] Guo J H,Liu X J,Zhang Y,et al. Significant acidification in major Chinese croplands[J]. Science, 2010, 327(5968):1008-1010.
    [15] du Jardin P. Plant biostimulants:Definition, concept, main categories and regulation[J]. Scientia Horticulturae, 2015, 196:3-14.
    [16] Lü S, Feng C, Gao C M, et al. Multifunctional environmental smart fertilizer based on l-aspartic acid for sustained nutrient release[J]. Journal of Agricultural and Food Chemistry, 2016, 64(24):4965-4974.
    [17] Tang Y F, Yang Y C, Cheng D D, et al. Multifunctional slow-release fertilizer prepared from lignite activated by a 3D-molybdate-sulfur hierarchical hollow nanosphere catalyst[J]. ACS Sustainable Chemistry&Engineering, 2019, 7(12):10533-10543.
    [18] Wang X Y, Yang Y C, Gao B, et al. Slow-released bio-organic-chemical fertilizer improved tomato growth:Synthesis and pot evaluations[J]. Journal of Soils and Sediments, 2021, 21(1):319-327.
    [19] Yakhin O I, Lubyanov A A, Yakhin I A, et al. Biostimulants in plant science:A global perspective[J]. Frontiers in Plant Science, 2017, 7:2049.
    [20] Jing J Y, Gao W, Cheng L Y, et al. Harnessing rootforaging capacity to improve nutrient-use efficiency for sustainable maize production[J]. Field Crops Research, 2022, 279:108462.
    [21] Zhang D S, Lyu Y, Li H B, et al. Neighbouring plants modify maize root foraging for phosphorus:Coupling nutrients and neighbours for improved nutrient-use efficiency[J]. New Phytologist, 2020, 226(1):244-253.
    [22] Zhang D S, Zhang C C, Tang X Y, et al. Increased soil phosphorus availability induced by faba bean root exudation stimulates root growth and phosphorus uptake in neighbouring maize[J]. New Phytologist, 2016, 209(2):823-831.
    [23] Zhang L, Feng G, Declerck S. Signal beyond nutrient, fructose, exuded by an arbuscular mycorrhizal fungus triggers phytate mineralization by a phosphate solubilizing bacterium[J]. The ISME Journal, 2018, 12(10):2339-2351.
    [24] Zhang L, Xu M G, Liu Y, et al. Carbon and phosphorus exchange may enable cooperation between an arbuscular mycorrhizal fungus and a phosphate-solubilizing bacterium[J]. New Phytologist, 2016, 210(3):1022-1032.
    [25] Zhang L, Zhou J C, George T S, et al. Arbuscular mycorrhizal fungi conducting the hyphosphere bacterial orchestra[J]. Trends in Plant Science, 2022, 27(4):402-411.
    [26] Wang X, Whalley W R, Miller A J, et al. Sustainable cropping requires adaptation to a heterogeneous rhizosphere[J]. Trends in Plant Science, 2020, 25(12):1194-1202.
    [27] Wen Z H, Li H B, Shen Q, et al. Tradeoffs among root morphology, exudation and mycorrhizal symbioses for phosphorus-acquisition strategies of 16 crop species[J]. New Phytologist, 2019, 223(2):882-895.
    [28] Wen Z H, White P J, Shen J B, et al. Linking root exudation to belowground economic traits for resource acquisition[J]. New Phytologist, 2022, 233(4):1620-1635.
    [29] Giehl R F H, von Wirén N. Root nutrient foraging[J]. Plant Physiology, 2014, 166(2):509-517.
    [30] Meier M, Liu Y, Lay-Pruitt K S, et al. Auxin-mediated root branching is determined by the form of available nitrogen[J]. Nature Plants, 2020, 6(9):1136-1145.
    [31] Remans T, Nacry P, Pervent M, et al. The Arabidopsis NRT1.1 transporter participates in the signaling pathway triggering root colonization of nitrate-rich patches[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(50):19206-19211.
    [32] Zhao X, Dong Q Q, Ni S B, et al. Rhizosphere processes and nutrient management for improving nutrient-use efficiency in Macadamia production[J]. HortScience, 2019, 54(4):603-608.
    [33] Zhao X, Lyu Y, Jin K M, et al. Leaf phosphorus concentration regulates the development of cluster roots and exudation of carboxylates in Macadamia integrifolia[J]. Frontiers in Plant Science, 2021, 11:610591.
    [34] Tian H Y, Liu Z G, Zhang M, et al. Biobased polyurethane, epoxy resin, and polyolefin wax composite coating for controlled-release fertilizer[J]. ACS Applied Materials&Interfaces, 2019, 11(5):5380-5392.
    [35] Xie J Z, Yang Y C, Gao B, et al. Magnetic-sensitive nanoparticle self-assembled superhydrophobic biopolymercoated slow-release fertilizer:Fabrication, enhanced performance, and mechanism[J]. ACS Nano, 2019, 13(3):3320-3333.
    [36] Heuchan S M, Fan B, Kowalski J J, et al. Development of fertilizer coatings from polyglyoxylate-polyester blends responsive to root-driven pH change[J]. Journal of Agricultural and Food Chemistry, 2019, 67(46):12720-12729.
    [37] Hu P G, An J, Faulkner M M, et al. Nanoparticle charge and size control foliar delivery efficiency to plant cells and organelles[J]. ACS Nano, 2020, 14(7):7970-7986.
    [38] Liao Y Y, Huang Y X, Carvalho R, et al. Magnesium oxide nanomaterial, an alternative for commercial copper bactericides:Field-scale tomato bacterial spot disease management and total and bioavailable metal accumulation in soil[J]. Environmental Science&Technology, 2021, 55(20):13561-13570.
    [39] Mastronardi E, Cyr K, Monreal C M, et al. Selection of DNA aptamers for root exudate l-serine using multiple selection strategies[J]. Journal of Agricultural and Food Chemistry, 2021, 69(14):4294-4306.
    [40] Mastronardi E, Tsae P K, Zhang X R, et al. Preparation and characterization of aptamer-polyelectrolyte films and microcapsules for biosensing and delivery applications[J]. Methods, 2016, 97:75-87.
    [41] Guan S Q, Wang H B, Hou C H, et al. Research progress in new smart fertilizer[J]. Modern Chemical Industry, 2022, 42(1):46-50.[管士强,王好斌,侯翠红,等.智能新型肥料研究进展[J].现代化工, 2022, 42(1):46-50.]
    [42] Li T, Lv S Y, Chen J, et al. Progress in polymer-based environment-responsive fertilizers[J]. Acta Polymerica Sinica, 2018(3):336-348.[李涛,吕少瑜,陈姣,等.高分子基环境响应性肥料的研究进展[J].高分子学报, 2018(3):336-348.]
    [43] Wang Z, Hassan M U, Nadeem F, et al. Magnesium fertilization improves crop yield in most production systems:A meta-analysis[J]. Frontiers in Plant Science, 2020, 10:1727.
    [44] Liu Z. Regularities of content and distribution of zinc in soils of China[J]. Scientia Agricutura Sinica, 1994, 27(1):30-37.[刘铮.我国土壤中锌含量的分布规律[J].中国农业科学, 1994, 27(1):30-37.]
    [45] Wang Z. Evaluation of magnesium fertilizer on quality and efficiency improvement of economic crops in China[D]. Beijing:China Agricultural University, 2020.[王正.镁肥对我国经济作物提质增效的效果评价[D].北京:中国农业大学, 2020.]
    [46] DeRosa M C, Monreal C, Schnitzer M, et al. Nanotechnology in fertilizers[J]. Nature Nanotechnology, 2010. https://doi.org/10.1038/nnano.2010.2.
    [47] Raliya R, Saharan V, Dimkpa C, et al. Nanofertilizer for precision and sustainable agriculture:Current state and future perspectives[J]. Journal of Agricultural and Food Chemistry, 2018, 66(26):6487-6503.
    [48] Jin K M, Li H B, Li X Q, et al. Rhizosphere bacteria containing ACC deaminase decrease root ethylene emission and improve maize root growth with localized nutrient supply[J]. Food and Energy Security, 2021, 10(2):275-284.
    [49] Shen J B, Li C J, Mi G H, et al. Maximizing root/rhizosphere efficiency to improve crop productivity and nutrient use efficiency in intensive agriculture of China[J]. Journal of Experimental Botany, 2013, 64(5):1181-1192.
    [50] Jing J, Rui Y, Zhang F, et al. Localized application of phosphorus and ammonium improves growth of maize seedlings by stimulating root proliferation and rhizosphere acidification[J]. Field Crops Research, 2010, 119(2/3):355-364.
    [51] Ma Q H, Zhang F S, Rengel Z, et al. Localized application of NH4+-N plus P at the seedling and later growth stages enhances nutrient uptake and maize yield by inducing lateral root proliferation[J]. Plant and Soil, 2013, 372(1/2):65-80.
    [52] Jing J, Zhang F, Rengel Z, et al. Localized fertilization with P plus N elicits an ammonium-dependent enhancement of maize root growth and nutrient uptake[J]. Field Crops Research, 2012, 133:176-185.
    [53] Li X L. Root morphology and gene expression in response to heterogeneous nitrogen in maize[D]. Beijing:China Agricultural University, 2016.[李雪莲.异质性氮素调控玉米根系形态与基因表达的研究[D].北京:中国农业大学, 2016.]
    [54] Shen J B, Bai Y, Wei Z, et al. Rhizobiont:an interdisciplinary innovation and perspective for harmonizing resources, environment, and food security[J]. Acta Pedologica Sinica, 2021, 58(4):805-813.[申建波,白洋,韦中,等.根际生命共同体:协调资源、环境和粮食安全的学术思路与交叉创新[J].土壤学报, 2021, 58(4):805-813.]
    [55] Wen A,Havens K L,Bloch S E,et al. Enabling biological nitrogen fixation for cereal crops in fertilized fields[J]. ACS Synthetic Biology, 2021, 10(12):3264-3277.
    [56] Zhang S G, Fu X J, Tong Z H, et al. Lignin-clay nanohybrid biocomposite-based double-layer coating materials for controllable-release fertilizer[J]. ACS Sustainable Chemistry&Engineering, 2020, 8(51):18957-18965.
    [57] Feng C, Lü S Y, Gao C M, et al. "smart" fertilizer with temperature-and pH-responsive behavior via surfaceinitiated polymerization for controlled release of nutrients[J]. ACS Sustainable Chemistry&Engineering, 2015, 3(12):3157-3166.
    [58] Habibagahi A, Mébarki Y, Sultan Y, et al. Water-based oxygen-sensor films[J]. ACS Applied Materials&Interfaces, 2009, 1(8):1785-1792.
    [59] Li T, Lü S, Yan J, et al. An environment-friendly fertilizer prepared by layer-by-layer self-assembly for pH-responsive nutrient release[J]. ACS Applied Materials&Interfaces, 2019, 11(11):10941-10950.
    [60] Mastronardi E, Monreal C, DeRosa M C. Personalized medicine for crops? opportunities for the application of molecular recognition in agriculture[J]. Journal of Agricultural and Food Chemistry, 2018, 66(26):6457-6461.
    [61] Zhang G L, Zhou L L, Cai D Q, et al. Anion-responsive carbon nanosystem for controlling selenium fertilizer release and improving selenium utilization efficiency in vegetables[J]. Carbon, 2018, 129:711-719.
    [62] Bindra P, Kaur K, Rawat A, et al. Nano-hives for plant stimuli controlled targeted iron fertilizer application[J]. Chemical Engineering Journal, 2019, 375:121995.
    [63] Yoon H Y, Phong N T, Joe E N, et al. Crop root exudate composition-dependent disassembly of lignin-Fehydroxyapatite supramolecular structures:A better rhizosphere sensing platform for smart fertilizer development[J]. Advanced Sustainable Systems, 2021, 5(8):2100113.
    [64] Benício L P F, Constantino V R L, Pinto F G, et al. Layered double hydroxides:New technology in phosphate fertilizers based on nanostructured materials[J]. ACS Sustainable Chemistry&Engineering, 2017, 5(1):399-409.
    [65] Case D R, Gonzalez R, Zubieta J, et al. Synthesis, characterization, and cellular uptake of a glycylglycine chelate of magnesium[J]. ACS Omega, 2021, 6(49):33454-33461.
    [66] Ashida Y, Arashiba K, Nakajima K, et al. Molybdenumcatalysed ammonia production with samarium diiodide and alcohols or water[J]. Nature, 2019, 568(7753):536-540.
    [67] Muzammil I, Kim Y N, Kang H, et al. Plasma catalyst-integrated system for ammonia production from H2O and N2 at atmospheric pressure[J]. ACS Energy Letters, 2021, 6(8):3004-3010.
    [68] Zhao R B, Xie H T, Chang L, et al. Recent progress in the electrochemical ammonia synthesis under ambient conditions[J]. EnergyChem, 2019, 1(2):100011.
    [69] Casali L,Mazzei L,Shemchuk O,et al. Novel dual-action plant fertilizer and urease inhibitor:Urea·Catechol cocrystal. characterization and environmental reactivity[J]. ACS Sustainable Chemistry&Engineering, 2019, 7(2):2852-2859.
    [70] Woodward E E, Edwards T M, Givens C E, et al. Widespread use of the nitrification inhibitor nitrapyrin:Assessing benefits and costs to agriculture, ecosystems, and environmental health[J]. Environmental Science&Technology, 2021, 55(3):1345-1353.
    [71] Wang H B, Hou C H, Wang Y Y, et al. Inorganic coated controlled release compound fertilizer and industrialized application[J]. Journal of Wuhan Institute of Technology, 2017, 39(6):557-564.[王好斌,侯翠红,王艳语,等.无机包裹型缓释复合肥料及其产业化应用[J].武汉工程大学学报, 2017, 39(6):557-564.]
    相似文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张福锁,申建波,危常州,马文奇,张卫峰,黄成东,吕阳,张林,鲁振亚,营浩,程凌云,江荣风,屈凌波,侯翠红,王辛龙,修学峰,马航.绿色智能肥料:从原理创新到产业化实现[J].土壤学报,2022,59(4):873-887. DOI:10.11766/trxb202203290145 ZHANG Fusuo, SHEN Jianbo, WEI Changzhou, MA Wenqi, ZHANG Weifeng, HUANG Chengdong, Lü Yang, ZHANG Lin, LU Zhenya, YING Hao, CHENG Lingyun, JIANG Rongfeng, QU Lingbo, HOU Cuihong, WANG Xinlong, XIU Xuefeng, MA Hang. Green Intelligent Fertilizer: From Interdisciplinary Innovation to Industrialization Realization[J]. Acta Pedologica Sinica,2022,59(4):873-887.

复制
分享
文章指标
  • 点击次数:1282
  • 下载次数: 3422
  • HTML阅读次数: 5333
  • 引用次数: 0
历史
  • 收稿日期:2022-03-29
  • 最后修改日期:2022-04-15
  • 录用日期:2022-04-25
  • 在线发布日期: 2022-05-05
  • 出版日期: 2022-04-11
文章二维码