基于微波遥感的土壤水分反演估算研究进展
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

K903

基金项目:

国家重点研发计划项目(2022YFD1500701)资助


Research Progress of Soil Moisture Estimation Based on Microwave Remote Sensing
Author:
Affiliation:

Fund Project:

the National Key Research and Development Program of China(2022YFD1500701)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    土壤水分是地表和大气水热过程交换的重要纽带,对于农业生产、生态规划、水资源管理等具有十分重要的意义。微波遥感具有基本不受天气条件影响,具有较好探测植被覆盖下的土壤信息和土壤水分变化趋势等优势,成为目前遥感精确反演土壤水分的热点。本文整理了现有全球尺度的基于微波遥感的土壤水分产品;分析比较了土壤水分反演中主动微波遥感、被动微波遥感、主被动微波协同技术的原理、特点、适用范围和关键技术进展:主动微波遥感和被动微波遥感的 优势分别在于高空间分辨率和高时间分辨率,高空间分辨率可以很好捕捉地表细微的空间信息特征,但囿于土壤水分与后向散射系数之间的复杂关系,特别是植被、地表粗糙度等对雷达后向散射系数的干扰,使得反演土壤水分的精度不高,因而根据现实情况选取不同散射模型以及利用多源数据协同是目前改善精度的研究热点。而高时间分辨率可以实现全球及大尺度下的土壤水分监测,但是很难满足小尺度或者小区域范围的实际研究需求,为了能使实测数据在空间上得以较好匹配,提出多种降尺度方法。结合以上两种微波遥感方式的优劣,依托更为丰富的数据源、相对成熟的观测技术来对两者进行融合以提取更多的水分信息,以提升反演精度或者获得长时间序列数据。在目前的方法中,土壤水分反演在小尺度下表现出良好的性能,但在全球尺度上会出现数据缺失、适用性不强、反演精度不高以及反演过程过于复杂等诸多问题,可以借助多种观测方式(多极化、多角度、多波段)、多时相重复观测、在原有模型上引入新的算法以及数据同化等方面着手进行改进,同时全球卫星导航系统(Global Navigation Satellite System,GNSS)中长期稳定、高时空分辨率的L波段微波信号在陆面遥感领域的快速发展也为我国北斗卫星导航系统(BeiDou Navigation Satellite System,BDS)的发展提供了借鉴,展现出在土壤水分反演方面的巨大潜力。

    Abstract:

    Soil moisture is an important link for the exchange of water and heat processes between the surface and the atmosphere, and is of great significance to agricultural production, ecological planning, and water resources management. Microwave remote sensing has the advantages of not being affected by weather conditions and being able to better detect the soil information and trend of soil moisture change under vegetation coverage. Thus, it is a hot spot for accurate soil moisture retrieval by remote sensing. With the gradual increase in the number of Earth observation satellites, microwave detectors have developed from C-band to L-band, and soil moisture datasets have become more and more abundant. In this paper, the existing global-scale soil moisture products based on microwave remote sensing are summarized. It also analyzes and compares the principle, characteristics, application scope and key technological progress of active microwave remote sensing, passive microwave remote sensing, and active and passive microwave fusion in soil moisture retrieval. The advantage of active microwave remote sensing and passive microwave remote sensing is high spatial resolution and high temporal resolution, respectively. High spatial resolution can capture the subtle spatial information features of the surface, but it is limited by the complex relationship between soil moisture and backscattering coefficients, especially the interference of vegetation and surface roughness on the radar backscattering coefficient making retrieval of soil moisture inaccurate. Therefore, selecting different scattering models according to the actual situation and using multi-source data synergy are the current research hotspots to improve accuracy. This paper summarizes the active microwave soil moisture retrieval method into three types: mechanism model, empirical model and semi-empirical model according to the principle. We also considered the applicability and shortcomings at the same time. For instance, high temporal resolution can achieve global and large-scale soil moisture monitoring, but it is difficult to meet the actual research needs of small-scale or small-scale areas. In order to better match the measured data in space, four downscaling methods based on the geostatistical method, mathematical statistics method, data assimilation method and multi-source remote sensing data fusion method are proposed. Combining the advantages and disadvantages of the above two microwave remote sensing methods, researchers can rely on more abundant data sources and relatively mature observation technology to fuse and extract more moisture information and to improve the retrieval accuracy or obtain long-term series data. However, this method often has the problem of missing data due to factors such as revisit time, seasonal ice period or radio frequency interference, which has a great impact on the spatiotemporal continuity of the data. So, the interpolation methods based on time, space, and statistics have been employed to solve the missing value issues. In the current method, soil moisture retrieval shows good performance at small scales, but at the global scale, there will be many problems such as missing data, poor applicability, low retrieval accuracy, and too complicated retrieval processes. Improvements can be made by employing multiple observation methods (multi-polarization, multi-angle, multi-band), multi-temporal repeated observation, the introduction of new algorithms on the original model and data assimilation. The rapid development of long-term stable and high spatiotemporal resolution L-band microwave signals in the field of land remote sensing of Global Navigation Satellite System also provides a reference for the development of China's BeiDou Navigation Satellite System, showing its huge application potential.

    参考文献
    相似文献
    引证文献
引用本文

郑曼迪,刘忠,许昭辉,李剑辉,孙君龄.基于微波遥感的土壤水分反演估算研究进展[J].土壤学报,2024,61(1):16-28. DOI:10.11766/trxb202204110167 ZHENG Mandi, LIU Zhong, XU Zhaohui, LI Jianhui, SUN Junling. Research Progress of Soil Moisture Estimation Based on Microwave Remote Sensing[J]. Acta Pedologica Sinica,2024,61(1):16-28.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-04-11
  • 最后修改日期:2022-07-06
  • 录用日期:2023-05-12
  • 在线发布日期: 2023-05-15
  • 出版日期: 2024-01-15