植物根系对土壤水力参数影响的定量研究综述
作者:
基金项目:

河南省科技攻关计划(222102320222)、中国科学院青年创新促进会项目(Y9CJH01001)、国家自然科学基金项目(42071036,42171104)共同资助


Review on Quantification of Root-induced Change of Soil Hydraulic Parameters
Author:
  • LU Jianrong

    LU Jianrong

    Collaborative Innovation Center of South-to-North Water Diversion Area of Henan Province, International Joint Laboratory of Watershed Ecological Security for Water Source Region of Middle Route Project of South-North Water Diversion in Henan Province, College of Water Resource and Environment Engineering, Nanyang Normal University, Nanyang, Henan 473061, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LI Yunliang

    LI Yunliang

    Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • TAN Zhiqiang

    TAN Zhiqiang

    Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • JI Mingfei

    JI Mingfei

    Collaborative Innovation Center of South-to-North Water Diversion Area of Henan Province, International Joint Laboratory of Watershed Ecological Security for Water Source Region of Middle Route Project of South-North Water Diversion in Henan Province, College of Water Resource and Environment Engineering, Nanyang Normal University, Nanyang, Henan 473061, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • YANG Lei

    YANG Lei

    Collaborative Innovation Center of South-to-North Water Diversion Area of Henan Province, International Joint Laboratory of Watershed Ecological Security for Water Source Region of Middle Route Project of South-North Water Diversion in Henan Province, College of Water Resource and Environment Engineering, Nanyang Normal University, Nanyang, Henan 473061, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • B. Larry Li

    B. Larry Li

    Collaborative Innovation Center of South-to-North Water Diversion Area of Henan Province, International Joint Laboratory of Watershed Ecological Security for Water Source Region of Middle Route Project of South-North Water Diversion in Henan Province, College of Water Resource and Environment Engineering, Nanyang Normal University, Nanyang, Henan 473061, China;Department of Environmental Sciences, University of California, Riverside, Riverside CA 92521, USA
    在期刊界中查找
    在百度中查找
    在本站中查找
Fund Project:

Henan Province Key Science and Technology Program (222102320222), the Youth Innovation Promotion Association of the Chinese Academy of Sciences (Y9CJH01001) and the National Natural Foundation of China (Nos. (42071036, 42171104)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [75]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    植物根系是土壤结构以及土壤水力参数变化的重要影响要素。目前不仅缺乏定量描述“根-孔隙-土壤水力参数”相互作用的研究方法,在更大尺度上根系作用的客观表达也尚不明确,由此导致降雨入渗、径流和蒸发等流域水文过程的精细刻画与模拟预测具有很大的不确定性。基于文献检索,本文对国内外相关研究进行了回顾与梳理,量化了植物根系对土壤水力参数的改变和影响,并提出其与植被、土壤类型的响应方式,总结了植物根系动态性生长下的土壤水力参数定量表述及其预测模型进展。同时分析了在定量研究根-土复合系统中存在的问题及未来研究的发展方向,指出目前根系影响土壤水力参数的研究主要集中在小尺度控制实验方面,忽略了大尺度下土壤空间异质性及外部环境因素的干扰,强调大尺度根系作用和根系参数纳入土壤结构的重要性和实际意义,进一步与水文模型的深度耦合逐渐成为未来研究的热点。

    Abstract:

    Plants roots are known as an important driving force for the change of soil structure and soil hydraulic parameters (SHP). However, there is a lack of appropriate modelling approaches to root-pore-SHP interactions with quantitative descriptions, which has led to knowledge gaps in the effects of roots on SHP at larger scales. A consequence of this gap is the bias in the simulation and prediction of hydrological processes such as infiltration, runoff and evaporation in catchments. In this paper, available literature is reviewed and used to quantify the changes and effects of plant roots on SHP. In addition, its relationships with plant and soil type are proposed. The quantitative expression of SHP and their prediction models under the dynamic growth of plant roots are summarized. This paper also analyzes problems and future research directions of the quantitative research on root-permeated soils. This study points out that the current research on SHP affecting roots focused on small-scale control experiments, ignoring the interference of soil spatial heterogeneity and environmental factors at large scales. Previous studies found contrasting root effects (on SHP) depending on which processes are dominant, including root growth (or decay) and the density and diameter of roots. Meanwhile, root-induced change of SHP was species (root characteristics), soil type, and time-dependent. Also, related studies indicated that the model’s accuracy and reliability would be improved when considering the temporal dynamics of roots induced by land cover/land use change and seasonal variations in SHP. Few efforts have been undertaken to incorporate root variables into soil function to predict SHP based on roots occupying the soil pore space, changing soil pore size distribution and soil pore network model. Neglecting root-induced change of SHP in hydrologic simulation may lead to high uncertainties. As the root-related dominant process at a larger scale is different to that in small-scale control experiments, there remain significant knowledge gaps that impede the development of quantitative guidance on root-induced change of SHP at a larger scale. It is highlighted that the importance of root effects and associated parameters related to soil structure, and it is becoming a part of hot topic about coupling hydrological and water quality models.

    参考文献
    [1] Paustian K,Lehmann J,Ogle S,et al. Climate-smart soils[J]. Nature,2016,532(7597):49—57.
    [2] Amundson R,Berhe A A,Hopmans J W,et al. Soil and human security in the 21st century[J]. Science,2015,348(6235):1261071.
    [3] de Jong R,Verbesselt J,Schaepman M E,et al. Trend changes in global greening and browning:Contribution of short-term trends to longer-term change[J]. Global Change Biology,2012,18(2):642—655.
    [4] Fatichi S,Or D,Walko R,et al. Soil structure is an important omission in Earth System Models[J]. Nature Communications,2020,11:522.
    [5] Zhang G L,Shi Z,Zhu A X,et al. Progress and perspective of studies on soils in space and time[J]. Acta Pedologica Sinica,2020,57(5):1060—1070.[张甘霖,史舟,朱阿兴,等. 土壤时空变化研究的进展与未来[J]. 土壤学报,2020,57(5):1060—1070.]
    [6] Katul G G,Oren R,Manzoni S,et al. Evapotranspiration:A process driving mass transport and energy exchange in the soil-plant-atmosphere-climate system[J]. Reviews of Geophysics,2012,50(3):RG3002.
    [7] Oki T,Kanae S. Global hydrological cycles and world water resources[J]. Science,2006,313(5790):1068—1072.
    [8] Cleveland C C,Houlton B Z,Smith W K,et al. Patterns of new versus recycled primary production in the terrestrial biosphere[J]. Proceedings of the National Academy of Sciences of the United States of America,2013,110(31):12733—12737.
    [9] Fisher R F,Binkley D. Ecology and Management of Forest Soils[M]. Chichester,UK:John Wiley & Sons,Ltd,2012.
    [10] Vereecken H,Weihermüller L,Assouline S,et al. Infiltration from the pedon to global grid scales:An overview and outlook for land surface modeling[J]. Vadose Zone Journal,2019,18(1):1—53.
    [11] Lei Z D,Hu H P,Yang S X. A review of soil water research[J]. Advances in Water Science,1999,10(3):311—318.[雷志栋,胡和平,杨诗秀. 土壤水研究进展与评述[J]. 水科学进展,1999,10(3):311—318.]
    [12] Yang D W,Cong Z T,Shang S H,et al. Research advances from soil water dynamics to ecohydrology[J]. Journal of Hydraulic Engineering,2016,47(3):390—397.[杨大文,丛振涛,尚松浩,等. 从土壤水动力学到生态水文学的发展与展望[J]. 水利学报,2016,47(3):390—397.]
    [13] Sullivan P L,Billings S A,Hirmas D,et al. Embracing the dynamic nature of soil structure:A paradigm illuminating the role of life in critical zones of the Anthropocene[J]. Earth-Science Reviews,2022,225:103873.
    [14] Chen X,Song Q F,Gao M,et al. Vegetation-soil- hydrology interaction and expression of parameter variations in ecohydrological models[J]. Journal of Beijing Normal University(Natural Science),2016,52(3):362—368.[陈喜,宋琪峰,高满,等. 植被—土壤—水文相互作用及生态水文模型参数的动态表述[J]. 北京师范大学学报(自然科学版),2016,52(3):362—368.]
    [15] Vereecken H,Weynants M,Javaux M,et al. Using pedotransfer functions to estimate the van genuchten- mualem soil hydraulic properties:A review[J]. Vadose Zone Journal,2010,9(4):795—820.
    [16] Wu H W. Atmosphere-plant-soil interactions:Theories and mechanisms[J]. Chinese Journal of Geotechnical Engineering,2017,39(1):1—47.[吴宏伟. 大气-植被-土体相互作用:理论与机理[J]. 岩土工程学报,2017,39(1):1—47.]
    [17] Bodner G,Leitner D,Kaul H P. Coarse and fine root plants affect pore size distributions differently[J]. Plant and Soil,2014,380(1/2):133—151.
    [18] Marcacci K M,Warren J M,Perfect E,et al. Influence of living grass roots and endophytic fungal hyphae on soil hydraulic properties[J]. Rhizosphere,2022:100510.
    [19] Shi X Q,Qin T L,Yan D H,et al. A meta-analysis on effects of root development on soil hydraulic properties[J]. Geoderma,2021,403:115363.
    [20] Ghestem M,Sidle R C,Stokes A. The influence of plant root systems on subsurface flow:Implications for slope stability[J]. BioScience,2011,61(11):869—879.
    [21] Deeks L K,Bengough A G,Low D,et al. Spatial variation of effective porosity and its implications for discharge in an upland headwater catchment in Scotland[J]. Journal of Hydrology,2004,290(3/4):217—228.
    [22] Shao W,Li M J,Wu Y,et al. Identification of varied soil hydraulic properties in a seasonal tropical rainforest[J]. Catena,2022,212:106104.
    [23] Scholl P,Leitner D,Kammerer G,et al. Root induced changes of effective 1D hydraulic properties in a soil column[J]. Plant and Soil,2014,381(1/2):193—213.
    [24] Leung A K,Garg A,Ng C W W. Effects of plant roots on soil-water retention and induced suction in vegetated soil[J]. Engineering Geology,2015,193:183—197.
    [25] Holtham D A L,Matthews G P,Scholefield D S. Measurement and simulation of void structure and hydraulic changes caused by root-induced soil structuring under white clover compared to ryegrass[J]. Geoderma,2007,142(1/2):142—151.
    [26] Bormann H,Breuer L,Gräff T,et al. Analysing the effects of soil properties changes associated with land use changes on the simulated water balance:A comparison of three hydrological catchment models for scenario analysis[J]. Ecological Modelling,2007,209(1):29—40.
    [27] Mahe G,Paturel J E,Servat E,et al. The impact of land use change on soil water holding capacity and river flow modelling in the Nakambe River,Burkina-Faso[J]. Journal of Hydrology,2005,300(1/2/3/4):33—43.
    [28] Šípek V,Jačka L,Seyedsadr S,et al. Manifestation of spatial and temporal variability of soil hydraulic properties in the uncultivated Fluvisol and performance of hydrological model[J]. Catena,2019,182:104119.
    [29] Lu J R,Zhang Q,Li Y L,et al. Impact of typical plant roots on vertical soil water movement in Poyang Lake Wetland:A numerical study[J]. China Environmental Science,2020,40(5):2180—2189.[鲁建荣,张奇,李云良,等. 鄱阳湖典型洲滩湿地植物根系对水分垂向通量的影响[J]. 中国环境科学,2020,40(5):2180—2189.]
    [30] Milly P C D. Estimation of Brooks-Corey Parameters from water retention data[J]. Water Resources Research,1987,23(6):1085—1089.
    [31] Kosugi K. Lognormal distribution model for unsaturated soil hydraulic properties[J]. Water Resources Research,1996,32(9):2697—2703.
    [32] van Genuchten M T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America Journal,1980,44(5):892—898.
    [33] Yu Y,Loiskandl W,Kaul H P,et al. Estimation of runoff mitigation by morphologically different cover crop root systems[J]. Journal of Hydrology,2016,538:667—676.
    [34] Bruand A,Cousin I,Nicoullaud B,et al. Backscattered electron scanning images of soil porosity for analyzing soil compaction around roots[J]. Soil Science Society of America Journal,1996,60(3):895—901.
    [35] Koebernick N,Naveed M,Daly K,et al. Root induced compaction alleviation by root hairs——visualization with synchrotron imaging[C]. EGU General Assembly Conference Abstracts,2018:8410.
    [36] Logsdon S D,Timlin D,Ahuja L R. Root effects on soil properties and processes:Synthesis and future research needs[J]. Newspaper Research Journal,2013.
    [37] Whalley W R,Riseley B,Leeds-Harrison P B,et al. Structural differences between bulk and rhizosphere soil[J]. European Journal of Soil Science,2005,56(3):353—360.
    [38] Zhou Y Y,Xu K,Chen J P,et al. Mechanism of plant lateral root reinforcing soil based on CT scan and mesomechanics analysis[J]. Transactions of the Chinese Society of Agricultural Engineering,2014,30(1):1—9.[周云艳,徐琨,陈建平,等. 基于CT扫描与细观力学的植物侧根固土机理分析[J]. 农业工程学报,2014,30(1):1—9.]
    [39] Poirier V,Roumet C,Munson A D. The root of the matter:Linking root traits and soil organic matter stabilization processes[J]. Soil Biology and Biochemistry,2018,120:246—259.
    [40] Milleret R,le Bayon R C,Lamy F,et al. Impact of roots,mycorrhizas and earthworms on soil physical properties as assessed by shrinkage analysis[J]. Journal of Hydrology,2009,373(3/4):499—507.
    [41] Hayashi Y,Ken'ichirou K,Mizuyama T. Changes in pore size distribution and hydraulic properties of forest soil resulting from structural development[J]. Journal of Hydrology,2006,331(1/2):85—102.
    [42] Carminati A,Schneider C L,Moradi A B,et al. How the rhizosphere may favor water availability to roots[J]. Vadose Zone Journal,2011,10(3):988—998.
    [43] Li S,Yang Y C,Yao Y Y,et al. Effects of different land-use types on physical and chemical properties of coastal saline-alkali soils in Shandong Province[J]. Acta Pedologica Sinica,2022,59(4):1012—1024.[李珊,杨越超,姚媛媛,等. 不同土地利用方式对山东滨海盐碱土理化性质的影响[J]. 土壤学报,2022,59(4):1012—1024.]
    [44] Sharma S K,Mohanty B P,Zhu J T. Including topography and vegetation attributes for developing pedotransfer functions[J]. Soil Science Society of America Journal,2006,70(5):1430—1440.
    [45] Jana R B,Mohanty B P. Enhancing PTFs with remotely sensed data for multi-scale soil water retention estimation[J]. Journal of Hydrology,2011,399(3/4):201—211.
    [46] Niemeyer R J,Fremier A K,Heinse R,et al. Woody vegetation increases saturated hydraulic conductivity in dry tropical Nicaragua[J]. Vadose Zone Journal,2014,13(1):1—11.
    [47] Cannavo P,Michel J C. Peat particle size effects on spatial root distribution,and changes on hydraulic and aeration properties[J]. Scientia Horticulturae,2013,151:11—21.
    [48] Chen R,Huang J W,Chen Z K,et al. Effect of root density of wheat and okra on hydraulic properties of an unsaturated compacted loam[J]. European Journal of Soil Science,2019,70(3):493—506.
    [49] Fraccica A,Romero E,Fourcaud T. Multi-scale effects on the hydraulic behaviour of a root-permeated and compacted soil[J]. E3S Web of Conferences,2019,92:12014.
    [50] Ni J J,Leung A K,Ng C W W. Unsaturated hydraulic properties of vegetated soil under single and mixed planting conditions[J]. Géotechnique,2019,69(6):554—559.
    [51] Song L,Li J H,Zhou T,et al. Experimental study on unsaturated hydraulic properties of vegetated soil[J]. Ecological Engineering,2017,103:207—216.
    [52] Yuge K,Shigematsu K,Anan M,et al. Effect of crop root on soil water retentivity and movement[J]. American Journal of Plant Sciences,2012,3(12):1782—1787.
    [53] Głąb T,Szewczyk W. Influence of simulated traffic and roots of turfgrass species on soil pore characteristics[J]. Geoderma,2014,230/231:221—228.
    [54] Rahardjo H,Satyanaga A,Leong E C,et al. Performance of an instrumented slope covered with shrubs and deep-rooted grass[J]. Soils and Foundations,2014,54(3):417—425.
    [55] Wahren A,Feger K H,Schwärzel K,et al. Land-use effects on flood generation–considering soil hydraulic measurements in modelling[J]. Advances in Geosciences,2009,21:99—107.
    [56] Leung A K,Boldrin D,Liang T,et al. Plant age effects on soil infiltration rate during early plant establishment[J]. Géotechnique,2017,68(7):646—652.
    [57] Scanlan C. Processes and effects of root-induced changes to soil hydraulic properties[D]. University of Western Australia,2009
    [58] Vergani C,Graf F. Soil permeability,aggregate stability and root growth:A pot experiment from a soil bioengineering perspective[J]. Ecohydrology,2016,9(5):830—842.
    [59] Archer N A L,Quinton J N,Hess T M. Below-ground relationships of soil texture,roots and hydraulic conductivity in two-phase mosaic vegetation in South-east Spain[J]. Journal of Arid Environments,2002,52(4):535—553.
    [60] Bormann H,Klaassen K. Seasonal and land use dependent variability of soil hydraulic and soil hydrological properties of two Northern German soils[J]. Geoderma,2008,145(3/4):295—302.
    [61] Fischer C,Tischer J,Roscher C,et al. Plant species diversity affects infiltration capacity in an experimental grassland through changes in soil properties[J]. Plant and Soil,2015,397(1/2):1—16.
    [62] Hu W,Shao M G,Wang Q J,et al. Temporal changes of soil hydraulic properties under different land uses[J]. Geoderma,2009,149(3/4):355—366.
    [63] Huang Z,Tian F P,Wu G L,et al. Legume Grasslands Promote Precipitation Infiltration better than Gramineous Grasslands in arid Regions[J]. Land Degradation & Development,2017,28(1):309—316.
    [64] Kodešová R,Jirků V,Kodeš V,et al. Soil structure and soil hydraulic properties of Haplic Luvisol used as arable land and grassland[J]. Soil and Tillage Research,2011,111(2):154—161.
    [65] Lichner L,Eldridge D J,Schacht K,et al. Grass cover influences hydrophysical parameters and heterogeneity of water flow in a sandy soil[J]. Pedosphere,2011,21(6):719—729.
    [66] Meek B D,DeTar W R,Rechel E R,et al. Infiltration rate as affected by an alfalfa and no-till cotton cropping system[J]. Soil Science Society of America Journal,1990,54(2):505—508.
    [67] Ng C W W,Ni J J,Leung A K. Effects of plant growth and spacing on soil hydrological changes:A field study[J]. Géotechnique,2020,70(10):867—881.
    [68] Wu G L,Yang Z,Cui Z,et al. Mixed artificial grasslands with more roots improved mine soil infiltration capacity[J]. Journal of Hydrology,2016,535:54—60.
    [69] Soil A C D-O,Rock. Standard Practice for Classification of Soils for Engineering Purposes(Unified Soil Classification System)1[M]. ASTM international,2017.
    [70] Jotisankasa A,Sirirattanachat T. Effects of grass roots on soil-water retention curve and permeability function[J]. Canadian Geotechnical Journal,2017,54(11):1612—1622.
    [71] Maggi F,Porporato A. Coupled moisture and microbial dynamics in unsaturated soils[J]. Water Resources Research,2007,43(7):W07444.
    [72] Kroener E,Zarebanadkouki M,Bittelli M,et al. Simulation of root water uptake under consideration of nonequilibrium dynamics in the rhizosphere[J]. Water Resources Research,2016,52(8):5755—5770.
    [73] Kroener E. Perspectives from the Fritz-Scheffer Awardee 2017. How mucilage affects soil hydraulic dynamics[J]. Journal of Plant Nutrition and Soil Science,2021,184(1):20—24.
    [74] Roque-Malo S,Woo D K,Kumar P. Modeling the role of root exudation in critical zone nutrient dynamics[J]. Water Resources Research,2020,56(8):e2019WR026606.
    [75] Giannakis G V,Nikolaidis N P,Valstar J,et al. Integrated critical zone model(1D-ICZ):A tool for dynamic simulation of soil functions and soil structure[J]. Advances in Agronomy,2017,142:277—314.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

鲁建荣,李云良,谭志强,姬明飞,杨垒,B. Larry Li.植物根系对土壤水力参数影响的定量研究综述[J].土壤学报,2023,60(4):939-952. DOI:10.11766/trxb202204190188 LU Jianrong, LI Yunliang, TAN Zhiqiang, JI Mingfei, YANG Lei, B. Larry Li. Review on Quantification of Root-induced Change of Soil Hydraulic Parameters[J]. Acta Pedologica Sinica,2023,60(4):939-952.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-04-18
  • 最后修改日期:2022-06-24
  • 录用日期:2022-11-18
  • 在线发布日期: 2023-01-03
  • 出版日期: 2023-07-28
文章二维码