参数优化方法对微生物模型预测土壤有机碳时空演变的影响
作者:
中图分类号:

S159

基金项目:

国家自然科学基金项目(41971067)资助


Effects of Microbial Model Parameter Optimization on the Spatiotemporal Dynamics Modelling of Soil Organic Carbon
Author:
Fund Project:

The National Natural Science Foundation of China (General Program, Key Program, Major Research Plan)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [39]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    准确把握土壤有机碳(SOC)的时空演变规律对于土壤资源的高效持续利用、发挥土壤生态系统服务功能,以及应对气候变化等均具有重要意义。以江苏省南部为研究区,以明确表达微生物分解作用的微生物模型MIMICS为对象,以模型参数敏感性分析为切入点,分析了不同参数优化方法对MIMICS模型预测苏南农田表层(0~20 cm)SOC时空演变动态的影响。结果表明,批处理和点对点两种参数优化方法下,MIMICS模型均能较好地模拟1980—2015年苏南农田表层SOC密度先增加后减少的总体趋势;采用考虑模型参数空间异质性的点对点参数优化方法时,MIMICS模型预测精度最高,其预测误差(RMSE)较采用默认参数值时分别降低22.2%(2000年独立验证)和14.7%(2015年独立验证),但2015年SOC密度预测精度依然偏低(R2= 0.13,RMSE = 1.22 kg·m-2)。上述结果表明进一步改进微生物模型的结构、提高模型输入数据的精度及分辨率,将是微生物模型建模区域尺度SOC时空动态所面临的重要挑战。

    Abstract:

    【Objective】 Soil organic carbon (SOC) forms the basis of soil fertility, food production, and soil health, and plays a key role in climate change via mediating greenhouse gas emissions. Consequently, accurate characterization of SOC spatiotemporal dynamics is extremely important for the sustainable management of soil resources, ecosystem stability maintenance, and mitigation and adaptation to climate change. 【Method】 A total of 399, 413, and 407 cropland topsoil (0 ~ 20 cm) SOC data in 1980, 2000, and 2015 were collected from the southern Jiangsu Province of China, respectively, and the microbial-explicit SOC model MIMICS (Microbial-Mineral Carbon Stabilization) was used to model the spatiotemporal dynamics of SOC. The Sobol global sensitivity analysis was applied to identify the sensitive parameters of the MIMICS model, and then, two-parameter optimization schemes, one batch (using all SOC observations in a batch mode to optimize the parameters) and site-by-site (using SOC observations at individual sites to optimize the parameters site by site), were used to optimize the sensitive parameters of the MIMICS model through Markov Chain Monte Carlo (MCMC) approach, respectively. The coefficient of determination(R2), root mean squared error (RMSE), and mean absolute error (MAE) that were calculated from the independent validation of SOC in 2000 and 2015 were used to compare the performance of different parameter optimization schemes.【Result】Results show: (1) The net increment of SOC density between 1980 and 2000 was 0.89 kg·m-2, while the net decrement was 0.44 kg·m-2 between 2000 and 2015, representing a net increment of 0.45 kg·m-2 over the period of 1980-2015; (2) The MIMICS model with parameters optimized by either One batch or site-by-site method can represent the overall trends in topsoil SOC dynamics during the period of 1980-2015, but the model with parameters optimized by the site-by-site method presents more local details on the variability of the SOC change rate; (3) Compared with the default parameter values and the One-batch optimized parameter values, the MIMICS model with site-by-site optimized parameter values had the best performance in modeling the spatiotemporal dynamics of SOC in the study area, with the RMSE decreasing by 22.2% (the independent validation in 2000) and 14.7% (the independent validation in 2015) in comparison with the MIMICS model with default parameter values. Yet, its prediction accuracy in 2015 was still relatively low (R2 = 0.13, RMSE = 1.22 kg·m-2). 【Conclusion】The optimization of sensitive parameters can improve the space-time SOC prediction accuracy of the MIMICS model, and the representation of local details on the spatiotemporal patterns of SOC dynamics. Although the MIMICS model with the spatially heterogeneous parameter values optimized by the site-by-site method had the best performance, its prediction accuracy in 2015 was still relatively low, which indicated that the MIMICS model still has limitations in representing the responses of SOC to anthropogenic activities such as changes in land use and agricultural management practices. Thus, further improvement of the MIMICS model structure and enhancing the spatiotemporal resolution of model input data are still significant challenges for regional scale modeling of SOC spatiotemporal dynamics through microbial-explicit SOC models.

    参考文献
    [1] Lal R. Societal value of soil carbon [J]. Journal of Soil and Water Conservation,2014,69(6):186A-192A.
    [2] Lal R. Soil carbon sequestration impacts on global climate change and food security[J]. Science,2004,304(5677):1623-1627.
    [3] Lal R. Soil health and carbon management[J]. Food and Energy Security,2016,5(4):212-222.
    [4] Vereecken H,Schnepf A,Hopmans J W,et al. Modeling soil processes:Review,key challenges,and new perspectives[J]. Vadose Zone Journal,2016,15(5):1-57.
    [5] Jenkinson D S. The turnover of organic carbon and nitrogen in soil[J]. Philosophical Transactions of the Royal,1990,B329:361-368.
    [6] Li C S,Zhuang Y H,Frolking S,et al. Modeling soil organic carbon change in croplands of China[J]. Ecological Applications,2003,13(2):327-336.
    [7] Luo Y Q,Wu L H,Andrews J A,et al. Elevated CO2 differentiates ecosystem carbon processes:Deconvolution analysis of duke forest face data[J]. Ecological Monographs,2001,71(3):357-376.
    [8] Bonan G B,Doney S C. Climate,ecosystems,and planetary futures:The challenge to predict life in Earth system models[J]. Science,2018,359(6375):eaam8328.
    [9] Luo Y Q,Ahlström A,Allison S D,et al. Toward more realistic projections of soil carbon dynamics by Earth system models[J]. Global Biogeochemical Cycles,2016,30(1):40-56.
    [10] Gurung R B,Ogle S M,Breidt F J,et al. Bayesian calibration of the DayCent ecosystem model to simulate soil organic carbon dynamics and reduce model uncertainty[J]. Geoderma,2020,376:114529.
    [11] Hararuk O,Xia J Y,Luo Y Q. Evaluation and improvement of a global land model against soil carbon data using a Bayesian Markov chain Monte Carlo method[J]. Journal of Geophysical Research:Biogeosciences,2014,119(3):403-417.
    [12] Xu H Y,Zhang T,Luo Y Q,et al. Parameter calibration in global land carbon models using surrogate-based optimization[J]. Geoscientific Model Development Discussions,2017:1-28.
    [13] Domeignoz-Horta L A,Pold G,Liu X J A,et al. Microbial diversity drives carbon use efficiency in a model soil[J]. Nature Communications,2020,11:3684.
    [14] Wang B R,An S S,Liang C,et al. Microbial necromass as the source of soil organic carbon in global ecosystems[J]. Soil Biology and Biochemistry,2021,162:108422.
    [15] Zhang X,Zhao Y C,Xie E Z,et al. Spatio-temporal change of soil organic carbon,progress and prospects[J]. Journal of Agro-Environment Science,2020,39(4):673-679. [张秀,赵永存,谢恩泽,等. 土壤有机碳时空变化研究进展与展望[J]. 农业环境科学学报,2020,39(4):673-679.]
    [16] Luo Y Q,White L W,Canadell J G,et al. Sustainability of terrestrial carbon sequestration:A case study in Duke Forest with inversion approach[J]. Global Biogeochemical Cycles,2003,17(1):1021.
    [17] Tao F,Zhou Z H,Huang Y Y,et al. Deep learning optimizes data-driven representation of soil organic carbon in earth system model over the conterminous United States[J]. Frontiers in Big Data,2020,3:17.
    [18] Wieder W R,Grandy A S,Kallenbach C M,et al. Representing life in the earth system with soil microbial functional traits in the mimics model[J]. Geoscientific Model Development,2015,8(6):1789-1808.
    [19] Wieder W R,Grandy A S,Kallenbach C M,et al. Integrating microbial physiology and physio-chemical principles in soils with the microbial-mineral carbon stabilization(mimics)model[J]. Biogeosciences,2014,11(14):3899-3917.
    [20] Wieder W R,Hartman M D,Sulman B N,et al. Carbon cycle confidence and uncertainty:Exploring variation among soil biogeochemical models[J]. Global Change Biology,2018,24(4):1563-1579.
    [21] Zhang H C,Goll D S,Wang Y P,et al. Microbial dynamics and soil physicochemical properties explain large-scale variations in soil organic carbon[J]. Global Change Biology,2020,26(4):2668-2685.
    [22] Xie E Z,Zhao Y C,Lu F Y,et al. Comparison analysis of methods for prediction of spatial distribution of soil organic matter contents in farmlands south Jiangsu,China[J]. Acta Pedologica Sinica,2018,55(5):1051-1061. [谢恩泽,赵永存,陆访仪,等. 不同方法预测苏南农田土壤有机质空间分布对比研究[J]. 土壤学报,2018,55(5):1051-1061.]
    [23] Song G H,Li L Q,Pan G X,et al. Topsoil organic carbon storage of China and its loss by cultivation[J]. Biogeochemistry,2005,74(1):47-62.
    [24] Su Z,Rosnay P de,Wen J,et al. Evaluation of ECMWF's soil moisture analyses using observations on the Tibetan Plateau[J]. Journal of Geophysical Research:Atmospheres,2013,118(11):5304-5318.
    [25] Wang J M,Sun R,Zhang H L,et al. New global MuSyQ GPP/NPP remote sensing products from 1981 to 2018[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2021,14:5596-5612.
    [26] Karger D N,Conrad O,Böhner J,et al. Climatologies at high resolution for the earth's land surface areas[J]. Scientific Data,2017,4:170122.
    [27] Shi Z,Crowell S,Luo Y Q,et al. Model structures amplify uncertainty in predicted soil carbon responses to climate change[J]. Nature Communications,2018,9:2171.
    [28] Xu T,White L,Hui D F,et al. Probabilistic inversion of a terrestrial ecosystem model:Analysis of uncertainty in parameter estimation and model prediction[J]. Global Biogeochemical Cycles,2006,20(2):GB2007.
    [29] Taghizadeh-Mehrjardi R,Schmidt K,Amirian-Chakan A,et al. Improving the spatial prediction of soil organic carbon content in two contrasting climatic regions by stacking machine learning models and rescanning covariate space[J]. Remote Sensing,2020,12:1-26.
    [30] Zhao Y C,Wang M Y,Hu S J,et al. Economics- and policy-driven organic carbon input enhancement dominates soil organic carbon accumulation in Chinese croplands[J]. Proceedings of the National Academy of Sciences of the United States of America,2018,115(16):4045-4050.
    [31] Liu X Y,Zhao Y C,Shi X Z,et al. Sensitivity and uncertainty analysis of CENTURY-modeled SOC dynamics in upland soils under different climate-soil-management conditions:A case study in China[J]. Journal of Soils and Sediments,2017,17(1):85-96.
    [32] Brooks S P,Gelman A. General methods for monitoring convergence of iterative simulations[J]. Journal of Computational and Graphical Statistics,1998,7(4):434-455.
    [33] Bloom A A,Exbrayat J F,van der Velde I R,et al. The decadal state of the terrestrial carbon cycle:Global retrievals of terrestrial carbon allocation,pools,and residence times[J]. Proceedings of the National Academy of Sciences of the United States of America,2016,113(5):1285-1290.
    [34] Ge R,He H L,Ren X L,et al. Underestimated ecosystem carbon turnover time and sequestration under the steady state assumption:A perspective from long-term data assimilation[J]. Global Change Biology,2019,25(3):938-953.
    [35] Xie E Z,Zhao Y C,Li H D,et al. Spatio-temporal changes of cropland soil pH in a rapidly industrializing region in the Yangtze River Delta of China,1980-2015[J]. Agriculture,Ecosystems & Environment,2019,272:95-104.
    [36] Xie E Z,Zhang X,Lu F Y,et al. Spatiotemporal changes in cropland soil organic carbon in a rapidly urbanizing area of southeastern China from 1980 to 2015[J]. Land Degradation & Development,2022,33(9):1323-1336.
    [37] Fan M M,Lal R,Zhang H,et al. Variability and determinants of soil organic matter under different land uses and soil types in Eastern China[J]. Soil and Tillage Research,2020,198:104544.
    [38] Luo Y L,Li Q Q,Shen J,et al. Effects of agricultural land use change on organic carbon and its labile fractions in the soil profile in an urban agricultural area[J]. Land Degradation & Development,2019,30(15):1875-1885.
    [39] Yirsaw E,Wu W,Temesgen H,et al. Socioeconomic drivers of spatio-temporal land use/land cover changes in a rapidly urbanizing area of China,the Su-Xi-Chang region[J]. Applied Ecology and Environmental Research,2017,15(4):809-827.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张秀,谢恩泽,陈剑,彭雨璇,严国菁,赵永存.参数优化方法对微生物模型预测土壤有机碳时空演变的影响[J].土壤学报,2024,61(1):39-51. DOI:10.11766/trxb202201070648 ZHANG Xiu, XIE Enze, CHEN Jian, PENG Yuxuan, YAN Goujing, ZHAO Yongcun. Effects of Microbial Model Parameter Optimization on the Spatiotemporal Dynamics Modelling of Soil Organic Carbon[J]. Acta Pedologica Sinica,2024,61(1):39-51.

复制
分享
文章指标
  • 点击次数:564
  • 下载次数: 1504
  • HTML阅读次数: 546
  • 引用次数: 0
历史
  • 收稿日期:2022-05-08
  • 最后修改日期:2022-09-23
  • 录用日期:2022-11-15
  • 在线发布日期: 2023-01-03
  • 出版日期: 2024-01-15
文章二维码