长期不同施肥的棕壤胶体凝聚动力学比较
作者:
中图分类号:

S155.3

基金项目:

辽宁省教育厅科学研究经费项目(LSNQN202001)、辽宁省科学技术计划项目(2020JH2/10200034)和2022年研究生创新培育项目(2022YCXS39)资助


Comparative Study on Colloidal Aggregation Kinetics of Brown Earth under Long-term Fertilization
Author:
Fund Project:

Scientific Research Funds Project of Education Department of Liaoning Province (No. LSNQN202001), Science and Technology Plan Project of Liaoning Province(No. 2020JH2/10200034), Postgraduate Innovation Cultivation Project in 2022(No.2022YCXS39)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [34]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    土壤胶体的凝聚与土壤团聚体的形成密切相关。施肥改变土壤溶液环境,对土壤团聚体形成、土壤结构和土壤物质组成产生影响。探索长期不同施肥影响土壤胶体微观性质和相互作用进而影响土壤宏观现象的关联十分必要。依托35年棕壤长期定位施肥监测试验站,选取不施肥处理(CK)、施用氮肥(N)、施用有机肥(M)、氮肥与有机肥配合施用(N+M)四种处理的棕壤为研究对象,采用动态光散射技术监测不同施肥处理的棕壤胶体凝聚动力学过程,通过对比分析棕壤有机质含量、表面化学性质和棕壤矿物组成等探究不同施肥处理对棕壤胶体凝聚过程的影响。研究发现:四种长期不同施肥处理的棕壤胶体凝聚特征均表现为在低电解质浓度条件下发生慢速凝聚(RLCA)与高电解质浓度条件下的快速凝聚(DLCA);不同施肥处理胶体在相同电解质体系中的临界聚沉浓度的大小顺序均为M > N+M > CK > N。有机肥的长期施用增加了棕壤有机质含量,从而提高了胶体颗粒表面电场强度,加大了胶体颗粒间的静电斥力,加之有机质组分的空间位阻效应使得胶体的凝聚现象减弱;另一方面,长期不同施肥处理并未改变棕壤黏土矿物组成类型,但对其相对含量产生影响:其中,有机肥的长期施入使2︰1型伊利石的相对含量增加,1︰1型高岭石的相对含量减少,长期施用氮肥使伊利石相对含量减少而高岭石相对含量增加。综上,长期不同施肥处理会改变棕壤胶体的基本理化性质和矿物组成比例关系,进而影响棕壤胶体的凝聚动力学过程。

    Abstract:

    【Objective】 The aggregation of soil colloids is closely related to the formation of soil aggregates. Fertilization can change the environment of soil solution, and affect the formation of soil aggregates, soil structure and soil mineral composition. It is necessary to explore the relationship between the long-term effects of different fertilization on the microscopic properties and interactions of soil colloids and thus the macroscopic phenomena of soils. 【Method】 Based on a 35-year long-term fertilization monitoring experiment in the experimental station of brown earth, soils treated with no fertilization(CK), nitrogen fertilizer(N), organic fertilizer(M) and the combination of nitrogen fertilizer and organic fertilizer(N+M) were selected as the research objects in this study. Dynamic light scattering technology was used to monitor the dynamic aggregation process of soil colloids with different fertilization treatments. The effects of fertilization treatments on colloid aggregation were comparatively analyzed through the organic matter content, soil mineral composition and surface chemical properties. 【Result】 The soil colloids of the four treatments showed the characteristics of slow aggregation(RLCA) at low electrolyte concentration and fast aggregation(DLCA) at high electrolyte concentration. The order of critical coagulation concentration of four different fertilization treatments was M > N+M > CK > N. Also the long-term application of organic fertilizer increased soil organic matter, thereby increasing the electric field strength near the surface of colloidal particles and the electrostatic repulsion between colloidal particles. Furthermore, the steric hindrance effects of humus weakened the phenomenon of colloid aggregation; On the other hand, long-term fertilization did not change the soil clay mineral composition type, but had an impact on its relative content. The application of organic fertilizer increased the relative content of 2:1 type illite and decreased the relative content of 1:1 type kaolinite. The application of nitrogen fertilizer reduced the relative content of illite and increased the relative content of kaolinite. 【Conclusion】 Different fertilization treatments for a long time changed the basic physicochemical properties and mineral composition ratio of brown earth colloids, which in turn affected the aggregation kinetics of brown earth colloids.

    参考文献
    [1] Liu Y L, Wang P, Wang J K. Formation and stability mechanism of soil aggregates:Progress and prospect[J]. Acta Pedologica Sinica, 2023, 60(3):627-643. [刘亚龙, 王萍, 汪景宽. 土壤团聚体的形成和稳定机制:研究进展与展望[J]. 土壤学报, 2023, 60(3):627-643.]
    [2] Zhu H L. Laser scattering study of soil organic/inorganic colloidal particles aggregation[D]. Chongqing:Southwest University, 2009. [朱华玲. 土壤有机\无机胶体颗粒凝聚的激光散射研究[D]. 重庆:西南大学, 2009.]
    [3] Tian R, Yang G, Li H, et al. Activation energies of colloidal particle aggregation:Towards a quantitative characterization of specific ion effects[J]. Physical Chemistry Chemical Physics, 2014, 16(19):8828-8836.
    [4] Sun Y L, Pan D Q, Wei X Y, et al. Insight into the stability and correlated transport of kaolinite colloid:Effect of pH, electrolytes and humic substances[J]. Environmental Pollution, 2020, 266:115189.
    [5] Tang Y, Li H, Zhu H L, et al. Impact of electric field on Hofmeister effects in aggregation of negatively charged colloidal minerals[J]. Journal of Chemical Sciences, 2016, 128(1):141-151.
    [6] Zhang Y K, Tian R, Tang J, et al. Specific ion effect of H+ on variably charged soil colloid aggregation[J]. Pedosphere, 2020, 30(6):844-852.
    [7] Zhang Y K. Hofmeister effects in different single/multi-components soil colloids aggregation[D]. Chongqing:Southwest University, 2022. [张烨坤. 单一与混合组分土壤胶体凝聚中的Hofmeister效应[D]. 重庆:西南大学, 2022.]
    [8] Wang Z F, Li X H, Wang P. Evolution analysis of soil physical and chemical properties under long-term positioning fertilization condition[J]. Shandong Agricultural Sciences, 2020, 52(6):65-70. [王子凤, 李絮花, 王鹏. 长期定位施肥条件下土壤理化性质的演变[J]. 山东农业科学, 2020, 52(6):65-70.]
    [9] Goldberg S, Glaubig R A. Effect of saturating cation, pH, and aluminum and iron oxide on the flocculation of kaolinite and montmorillonite[J]. Clays and Clay Minerals, 1987, 35(3):220-227.
    [10] Goldberg S, Forster H S. Flocculation of reference clays and arid-zone soil clays[J]. Soil Science Society of America Journal, 1990, 54(3):714-718.
    [11] Wang G L, Duan J N, Jia N F, et al. Effects of long-term fertilization on soil physical and chemical property in loess hilly area[J]. Journal of Soil and Water Conservation, 2006, 20(4):82-85, 89. [王改兰, 段建南, 贾宁凤, 等. 长期施肥对黄土丘陵区土壤理化性质的影响[J]. 水土保持学报, 2006, 20(4):82-85, 89.]
    [12] Zhao G S, Li F D, Li Y S, et al. Effects of long-term fertilization on soil organic matter accumulation[J]. Ecology and Environmental Sciences, 2012, 21(5):840-847. [赵广帅, 李发东, 李运生, 等. 长期施肥对土壤有机质积累的影响[J]. 生态环境学报, 2012, 21(5):840-847.]
    [13] Xiong Y. Composition and compound of soil colloids[J]. Chinese Journal of Soil Science, 1979, 10(5):1-8, 28. [熊毅. 土壤胶体的组成及复合[J]. 土壤通报, 1979, 10(5):1-8, 28.]
    [14] Gao X D, Li H, Zhu H L, et al. Aggregation of humic colloidal particles as affected by electrolyte and pH[J]. Acta Pedologica Sinica, 2012, 49(4):698-707. [高晓丹, 李航, 朱华玲, 等. 特定pH条件下Ca2+/Cu2+引发胡敏酸胶体凝聚的比较研究[J]. 土壤学报, 2012, 49(4):698-707.]
    [15] Zhang G Y, Dong Y Y, Li X Y, et al. Sorption desorption of Cd2+ ion in several soil colloids in the presence of oxalic acid and citric acid[J]. Acta Pedologica Sinica, 2004, 41(4):558-563. [张桂银, 董元彦, 李学垣, 等. 有机酸对几种土壤胶体吸附解吸镉离子的影响[J]. 土壤学报, 2004, 41(4):558-563.]
    [16] Sun J, Liu M, Li L J, et al. The effect of different fertilization treatments on soil physical and chemical property[J]. Acta Agriculturae Boreali-Sinica, 2010, 25(4):221-225. [孙建, 刘苗, 李立军, 等. 不同施肥处理对土壤理化性质的影响[J]. 华北农学报, 2010, 25(4):221-225.]
    [17] Wang P. Mechanisms of soil dissolved organic matter stabilization in gray desert soil under long-term different fertilizations[D]. Nanjing:Nanjing Agricultural University, 2016. [王萍. 长期施肥下灰漠土溶解性有机质的稳定机制研究[D]. 南京:南京农业大学, 2016.]
    [18] Lagaly G, Ziesmer S. Colloid chemistry of clay minerals:The coagulation of montmorillonite dispersions[J]. Advances in Colloid and Interface Science, 2003, 100/101/102:105-128.
    [19] Holthusen D, Peth S, Horn R. Impact of potassium concentration and matric potential on soil stability derived from rheological parameters[J]. Soil and Tillage Research, 2010, 111(1):75-85.
    [20] Liu E K, Zhao B Q, Mei X R, et al. Distribution of water-stable aggregates and organic carbon of arable soils affected by different fertilizer application[J]. Acta Ecologica Sinica, 2010, 30(4):1035-1041. [刘恩科, 赵秉强, 梅旭荣, 等. 不同施肥处理对土壤水稳定性团聚体及有机碳分布的影响[J]. 生态学报, 2010, 30(4):1035-1041.]
    [21] Oades J M, Waters A G. Aggregate hierarchy in soils[J]. Soil Research, 1991, 29(6):815-828.
    [22] Zhu H L, Li B, Xiong H L, et al. Dynamic light scattering study on the aggregation kinetics of soil colloidal particles in different electrolyte systems[J]. Acta Physico-Chimica Sinica, 2009, 25(6):1225-1231. [朱华玲, 李兵, 熊海灵, 等. 不同电解质体系中土壤胶体凝聚动力学的动态光散射研究[J]. 物理化学学报, 2009, 25(6):1225-1231.]
    [23] Lu R K. Analytical methods for soil and agro-chemistry[M]. Beijing:China Agricultural Science and Technology Press, 2000. [鲁如坤. 土壤农业化学分析方法[M]. 北京:中国农业科技出版社, 2000.]
    [24] Xiong Y. Soil colloids-Book 2-Soil colloid research method[M]. Beijing:Science Press, 1985. [熊毅. 土壤胶体-第二册-土壤胶体研究法[M]. 北京:科学出版社, 1985.]
    [25] Gao X D, Xu Y D, Zhang G C, et al. Effects of Cu2+ and Zn2+ polarization by electric fields on the colloid aggregation of black soil[J]. Journal of Agro-Environment Science, 2018, 37(3):440-447. [高晓丹, 徐英德, 张广才, 等. Cu2+和Zn2+在土壤电场中的极化对黑土胶体凝聚的影响[J]. 农业环境科学学报, 2018, 37(3):440-447.]
    [26] Li S B, Xu Y D, Zhang Y, et al. Effects of Na+, Ca2+ and Na+-Ca2+ mixture on the stability of humic acid colloids[J]. Acta Pedologica Sinica, 2020, 57(5):1240-1248. [李少博, 徐英德, 张昀, 等. Na+、Ca2+及Na+-Ca2+混合离子对胡敏酸胶体稳定性的影响[J]. 土壤学报, 2020, 57(5):1240-1248.]
    [27] Xu N C, Shen J L, Luo H Y. Analysis for crystallinity of kaolinites by X-ray diffractometer and infrared spectroscopy[J]. Resources Survey and Environment, 2014, 35(2):152-156. [许乃岑, 沈加林, 骆宏玉. X射线衍射和红外光谱法分析高岭石结晶度[J]. 资源调查与环境, 2014, 35(2):152-156.]
    [28] Huang C Y, Xu J M. Soil Science[M]. 3rd ed. Beijing:China Agriculture Press, 2010. [黄昌勇, 徐建明. 土壤学[M]. 3版. 北京:中国农业出版社, 2010.]
    [29] Gupta R K, Bhumbla D K, Abrol I P. Effect of sodicity, pH, organic matter, and-calcium carbonate on the dispersion behavior of soils[J]. Soil Science, 1984, 137(4):245-251.
    [30] Cai T J, Dai Y, Shan P Y, et al. Effect of different fertilization on stability of soil particles and their tetracycline adsorption characteristics[J]. Journal of Nanjing Agricultural University, 2017, 40(6):1065-1073. [蔡天晋, 戴越, 单培源, 等. 不同施肥方式下土壤颗粒稳定性及其对四环素吸附能力的影响[J]. 南京农业大学学报, 2017, 40(6):1065-1073.]
    [31] Hu Q Y, Lan Y Q, Xue J H. Factors influencing the stability of soil colloid[J]. Soils, 1996, 28(6):290-294, 315. [胡琼英, 兰叶青, 薛家骅. 土壤胶体稳定性影响因素[J]. 土壤, 1996, 28(6):290-294, 315.]
    [32] Kretzschmar R, Robarge W P, Weed S B. Flocculation of kaolinitic soil clays:Effects of humic substances and iron oxides[J]. Soil Science Society of America Journal, 1993, 57(5):1277-1283.
    [33] Visser S A, Caillier M. Observations on the dispersion and aggregation of clays by humic substances, I. Dispersive effects of humic acids[J]. Geoderma, 1988, 42(3/4):331-337.
    [34] Zhu H L, Li H, Jia M Y, et al. Light scattering studies of aggregation of organic/inorganic colloids in soil[J]. Acta Pedologica Sinica, 2012, 49(3):409-416. [朱华玲, 李航, 贾明云, 等. 土壤有机/无机胶体凝聚的光散射研究[J]. 土壤学报, 2012, 49(3):409-416.]
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

任凯璐,左研,寇琪,张广才,张昀,汪景宽,高晓丹.长期不同施肥的棕壤胶体凝聚动力学比较[J].土壤学报,2024,61(2):484-494. DOI:10.11766/trxb202208300347 REN Kailu, ZUO Yan, KOU Qi, ZHANG Guangcai, ZHANG Yun, WANG Jingkuan, GAO Xiaodan. Comparative Study on Colloidal Aggregation Kinetics of Brown Earth under Long-term Fertilization[J]. Acta Pedologica Sinica,2024,61(2):484-494.

复制
分享
文章指标
  • 点击次数:316
  • 下载次数: 1464
  • HTML阅读次数: 472
  • 引用次数: 0
历史
  • 收稿日期:2022-08-30
  • 最后修改日期:2022-11-14
  • 录用日期:2023-02-20
  • 在线发布日期: 2023-03-03
  • 出版日期: 2024-03-15
文章二维码