土壤厚度演化模型理论方法研究进展
作者:
基金项目:

国家自然科学基金项目(92047301)和国家重点实验室自主研究课题(522012242)资助


Modelling Soil Thickness Evolution: Advancements and Challenges
Author:
Fund Project:

The National Natural Science Foundation of China (General Program, Key Program, Major Research Plan)(No. 92047301)and State Key Laboratory Independent Research Project of China(No. 522012242)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [75]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    全球平均土壤厚度仅约为1 m,但土壤厚度的空间分布信息在地貌、生态及水文科学等领域的研究和实践中具有重要价值。由于其具有显著的空间异质性,基于现有土壤制图产品、地球物理勘测及经验统计模型难以获取流域尺度土壤厚度分布信息,亟待发展土壤厚度预测的过程机理模型。本文回顾了土壤厚度演化模型理论方法的研究进展,评价了不同土壤生成及输移模型的适用性。研究指出土壤化学风化成土等机理仍不清晰是制约模型发展的理论瓶颈。此外,模型的方法体系仍需完善,亟待进一步发展描述土壤生成和输移的函数形式及其参数的估计方法等,指出物理与随机结合的模拟方法以及基于数学物理途径的参数确定方法等有望解决模型应用中遇到的难题。最后,在土壤厚度演化模型基础上,提出发展基于流域协同演化理论的土壤发生学模型是定量预测土壤理化全要素发生所亟需突破的难点之一。

    Abstract:

    Global soil thickness is only about 1 m. Its spatial distribution is nevertheless crucial in many hydrological and ecological processes, and it also determines hillslope stability and channel initiation in geomorphological fields. Due to its significant spatial heterogeneity, it is difficult to obtain the soil thickness distribution on a catchment scale based on existing soil survey databases, geophysical investigations, or empirical models. Therefore, it is urgent to develop a process-based model for soil thickness prediction. In this study, methodologies and theories were comprehensively reviewed, and the applicability of different soil production and soil transport models were evaluated. This study pointed out that the mechanism of soil production by chemical weathering is still unclear and is a theoretical bottleneck restricting the development of soil thickness evolution models. Moreover, the methodology of the model still needs to be further developed, and it is urgent to develop and improve the parameter estimation methods and the adoption of equation forms for describing soil production and soil transport in such models upon applications. From our analysis, we inferred that a hybrid model combining stochastic and process-based models as well as mathematical physically-based methods for determining parameters may help solve many difficulties faced in model applications. Finally, we discussed the possible integration of soil thickness evolution models and soil pedogenesis models based on the theoretical frame of catchment coevolution for predicting soil thickness, texture, layering and organic carbon content variation in the landscape.

    参考文献
    [1] Patton N R, Lohse K A, Godsey S E, et al. Predicting soil thickness on soil mantled hillslopes[J]. Nature Communications, 2018, 9:3329.
    [2] Riebe C S, Hahm W J, Brantley S L. Controls on deep critical zone architecture:A historical review and four testable hypotheses[J]. Earth Surface Processes and Landforms, 2017, 42(1):128-156.
    [3] Jenny H. Factors of soil formation:A system of quantitative pedology[M]. Courier Corporation, 1994.
    [4] Dietrich W E, Reiss R, Hsu M L, et al. A process-based model for colluvial soil depth and shallow landsliding using digital elevation data[J]. Hydrological Processes, 1995, 9(3/4):383-400.
    [5] Heimsath A M, Dietrich W E, Nishiizumi K, et al. The soil production function and landscape equilibrium[J]. Nature, 1997, 388(6640):358-361.
    [6] Han X L, Liu J T, Srivastava P, et al. The dominant control of relief on soil water content distribution during wet-dry transitions in headwaters[J]. Water Resources Research, 2021, 57(11):e2021WR029587.
    [7] Zhang G L, Shi Z, Zhu A X, et al. Progress and perspective of studies on soils in space and time[J]. Acta Pedologica Sinica, 2020, 57(5):1060-1070. [张甘霖, 史舟, 朱阿兴, 等. 土壤时空变化研究的进展与未来[J]. 土壤学报, 2020, 57(5):1060-1070.]
    [8] Liu J, Han X, Chen X, et al. Prediction of soil thicknesses in a headwater hillslope with constrained sampling data[J]. Catena, 2019, 177:101-113.
    [9] Liu J T, Chen X, Lin H, et al. A simple geomorphic-based analytical model for predicting the spatial distribution of soil thickness in headwater hillslopes and catchments[J]. Water Resources Research, 2013, 49(11):7733-7746.
    [10] Hrachowitz M, Stockinger M, Coenders-Gerrits M, et al. Reduction of vegetation-accessible water storage capacity after deforestation affects catchment travel time distributions and increases young water fractions in a headwater catchment[J]. Hydrology and Earth System Sciences, 2021, 25(9):4887-4915.
    [11] Gilbert G K. Report on the geology of the Henry Mountains[M]. Washington:Government printing office, 1877.
    [12] Tucker G E, Hancock G R. Modelling landscape evolution[J]. Earth Surface Processes and Landforms, 2010, 35(1):28-50.
    [13] Scheidegger A E. Mathematical models of slope development[J]. Geological Society of America Bulletin, 1961, 72(1):37-50.
    [14] Culling W E H. Soil creep and the development of hillside slopes[J]. The Journal of Geology, 1963, 71(2):127-161.
    [15] Dixon J L, Riebe C S. Tracing and pacing soil across slopes[J]. Elements, 2014, 10(5):363-368.
    [16] Ahnert F. The role of the equilibrium concept in the interpretation of landforms of fluvial erosion and deposition[J]. L'evolution des Versants, 1967, 1:23-41.
    [17] Johnson D L. Soil thickness processes[J]. Catena, 1985, 6(Suppl.):29-40.
    [18] Johnson D L, Watson-Stegner D. Evolution model of pedogenesis[J]. Soil Science, 1987, 143(5):349-366.
    [19] Minasny B, McBratney A B. A rudimentary mechanistic model for soil formation and landscape development:II. A two-dimensional model incorporating chemical weathering[J]. Geoderma, 2001, 103(1/2):161-179.
    [20] Yoo K, Amundson R, Heimsath A M, et al. Integration of geochemical mass balance with sediment transport to calculate rates of soil chemical weathering and transport on hillslopes[J]. Journal of Geophysical Research, 2007, 112(F2):F02013.
    [21] Minasny B, McBratney A B, Salvador-Blanes S. Quantitative models for pedogenesis-A review[J]. Geoderma, 2008, 144(1/2):140-157.
    [22] Brosens L, Campforts B, Robinet J, et al. Slope gradient controls soil thickness and chemical weathering in subtropical Brazil:Understanding rates and timescales of regional soilscape evolution through a combination of field data and modeling[J]. Journal of Geophysical Research:Earth Surface, 2020, 125(6):e2019JF005321.
    [23] Liu J T, Han X L, Chen X. Hillslope critical zone structures and hydrological processes[M]. Beijing:Science Press, 2020:1-301. [刘金涛, 韩小乐, 陈喜. 山坡表层关键带结构与水文过程[M]. 北京:科学出版社, 2020:1-301]
    [24] Carson M A, Kirkby M J. Hillslope form and process[M]. Cambridge:University Press, 1972.
    [25] Cox N J. On the relationship between bedrock lowering and regolith thickness[J]. Earth Surface Processes, 1980, 5(3):271-274.
    [26] Furbish D J, Fagherazzi S. Stability of creeping soil and implications for hillslope evolution[J]. Water Resources Research, 2001, 37(10):2607-2618.
    [27] Pelletier J D, Rasmussen C. Geomorphically based predictive mapping of soil thickness in upland watersheds[J]. Water Resources Research, 2009, 45(9):W09417.
    [28] Phillips J D. The convenient fiction of steady-state soil thickness[J]. Geoderma, 2010, 156(3/4):389-398.
    [29] Saco P M, Willgoose G R, Hancock G R. Spatial organization of soil depths using a landform evolution model[J]. Journal of Geophysical Research:Earth Surface, 2006, 111(F2):F02016.
    [30] Riebe C S, Kirchner J W, Finkel R C. Sharp decrease in long-term chemical weathering rates along an altitudinal transect[J]. Earth and Planetary Science Letters, 2004, 218(3/4):421-434.
    [31] Harrison E J, Willenbring J, Brocard G. Global rates of soil production independent of soil depth[J]. 2021.(https://doi.org/10.31223/X5B30J)
    [32] Willgoose G, Bras R L, Rodriguez-Iturbe I. A coupled channel network growth and hillslope evolution model:1. Theory[J]. Water Resources Research, 1991, 27(7):1671-1684.
    [33] Roering J J, Hales T C. 7.29 changing hillslopes:Evolution and inheritance;inheritance and evolution of slopes[M]//Treatise on Geomorphology. Amsterdam:Elsevier, 2013:284-305.
    [34] Gabet E J, Mudd S M, Wood R W, et al. Hilltop curvature increases with the square root of erosion rate[J]. Journal of Geophysical Research:Earth Surface, 2021, 126(5):e2020JF005858.
    [35] Heimsath A M, Furbish D J, Dietrich W E. The illusion of diffusion:Field evidence for depth-dependent sediment transport[J]. Geology, 2005, 33(12):949-952.
    [36] Dietrich W E, Bellugi D G, Sklar L S, et al. Geomorphic transport laws for predicting landscape form and dynamics[M]//Prediction in Geomorphology. Washington, D. C:American Geophysical Union, 2013:103-132.
    [37] Roering J J, Kirchner J W, Dietrich W E. Evidence for nonlinear, diffusive sediment transport on hillslopes and implications for landscape morphology[J]. Water Resources Research, 1999, 35(3):853-870.
    [38] Roering J J. How well can hillslope evolution models "explain" topography? Simulating soil transport and production with high-resolution topographic data[J]. Geological Society of America Bulletin, 2008, 120(9/10):1248-1262.
    [39] Li X Y. Coupling, response and adaptation mechanism of soil-vegetation-hydrology in arid areas[J]. Scientia Sinica:Terrae, 2011, 41(12):1721-1730. [李小雁. 干旱地区土壤-植被-水文耦合、响应与适应机制[J]. 中国科学:地球科学, 2011, 41(12):1721-1730.]
    [40] Liu J T, Han X L, Liu J L, et al. Understanding of critical zone structures and hydrological connectivity:A review[J]. Advances in Water Science, 2019, 30(1):112-122. [刘金涛, 韩小乐, 刘建立, 等. 山坡表层关键带结构与水文连通性研究进展[J]. 水科学进展, 2019, 30(1):112-122.]
    [41] Fan Y, Clark M, Lawrence D M, et al. Hillslope hydrology in global change research and earth system modeling[J]. Water Resources Research, 2019, 55(2):1737-1772.
    [42] Yan Q, Wainwright H, Dafflon B, et al. Hybrid data-model-based mapping of soil thickness in a mountainous watershed[J]. Earth Surface Dynamics, 2021, 9(5):1347-1361.
    [43] Bonfatti B R, Hartemink A E, Vanwalleghem T, et al. A mechanistic model to predict soil thickness in a valley area of Rio Grande do Sul, Brazil[J]. Geoderma, 2018, 309:17-31.
    [44] Bertoldi G, Rigon R, Over T M. Impact of watershed geomorphic characteristics on the energy and water budgets[J]. Journal of Hydrometeorology, 2006, 7(3):389-403.
    [45] Wang H Y, Xie F R, Jing Z J. The application of terrestrial in-site cosmogenic nuclides 10Be in active tectonics research[J]. Bulletin of the Institute of Crustal Dynamics, 2016(1):36-50. [王慧颖, 谢富仁, 荆振杰.就地宇宙成因核素10Be测年法与地学应用[J].地壳构造与地壳应力文集, 2016(1):36-50.]
    [46] Egli M, Dahms D, Norton K. Soil formation rates on silicate parent material in alpine environments:Different approaches-different results? [J]. Geoderma, 2014, 213:320-333.
    [47] Huang L M, Zhang G L, Yang J N. Weathering and soil formation rates based on geochemical mass balances in a small forested watershed under acid precipitation in subtropical China[J]. Catena, 2013, 105:11-20.
    [48] Wakatsuki T, Rasyidin A. Rates of weathering and soil formation[J]. Geoderma, 1992, 52(3/4):251-263.
    [49] Jin L, Shao M, Zeng L M, et al. Estimation of dry deposition fluxes of major inorganic species by canopy throughfall approach[J]. Chinese Science Bulletin, 2006, 51(15):1818-1823.
    [50] Wakatsuki T, Rasyidin A, Naganawa T. Multiple regression method for estimating rates of weathering and soil formation in watersheds[J]. Soil Science and Plant Nutrition, 1993, 39(1):153-159.
    [51] Dosseto A, Turner S P, Chappell J. The evolution of weathering profiles through time:New insights from uranium-series isotopes[J]. Earth and Planetary Science Letters, 2008, 274(3/4):359-371.
    [52] Langmuir D. Uranium solution-mineral equilibria at low temperatures with applications to sedimentary ore deposits[J]. Geochimica et Cosmochimica Acta, 1978, 42(6):547-569.
    [53] Ma L, Chabaux F, Pelt E, et al. Regolith production rates calculated with uranium-series isotopes at Susquehanna/Shale Hills Critical Zone Observatory[J]. Earth and Planetary Science Letters, 2010, 297(1/2):211-225.
    [54] Lal D. Cosmic ray labeling of erosion surfaces:in situ nuclide production rates and erosion models[J]. Earth and Planetary Science Letters, 1991, 104(2/3/4):424-439.
    [55] Yang Y, Cui L F, Xu S, et al. Deciphering non-steady landscape evolution by in situ cosmogenic nuclide depth profile[J]. Scientia Sinica:Terrae, 2022, 52(4):649-662. [杨业, 崔丽峰, 徐胜, 等. 原位宇宙成因核素深度剖面法解析非稳态地貌演化[J]. 中国科学:地球科学, 2022, 52(4):649-662.]
    [56] Larsen I J, Almond P C, Eger A, et al. Rapid soil production and weathering in the Southern Alps, New Zealand[J]. Science, 2014, 343(6171):637-640.
    [57] Evans D, Rodés Á, Tye A. The sensitivity of cosmogenic radionuclide analysis to soil bulk density:Implications for soil formation rates[J]. European Journal of Soil Science, 2021, 72(1):174-182.
    [58] Dixon J L, Heimsath A M, Kaste J, et al. Climate-driven processes of hillslope weathering[J]. Geology, 2009, 37(11):975-978.
    [59] Monaghan M C, Elmore D. "Garden variety" 10Be in soils on hill slopes[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 1994, 92(1/2/3/4):357-361.
    [60] West N, Kirby E, Bierman P, et al. Regolith production and transport at the Susquehanna Shale Hills Critical Zone Observatory, part 2:Insights from meteoric 10Be[J]. Journal of Geophysical Research:Earth Surface, 2013, 118(3):1877-1896.
    [61] Egli M, Hunt A G, Dahms D, et al. Prediction of soil formation as a function of age using the percolation theory approach[J]. Frontiers in Environmental Science, 2018, 6:108.
    [62] Hunt A G, Ghanbarian B. Percolation theory for solute transport in porous media:Geochemistry, geomorphology, and carbon cycling[J]. Water Resources Research, 2016, 52(9):7444-7459.
    [63] Yu F, Hunt A G. An examination of the steady-state assumption in soil development models with application to landscape evolution[J]. Earth Surface Processes and Landforms, 2017, 42(15):2599-2610.
    [64] Hunt A G. Soil depth and soil production[J]. Complexity, 2016, 21(6):42-49.
    [65] Shen C D, Sun Y M, Yi W X, et al. Distribution characteristics and soil formation rate of 10Be in hilly and grassy slopes[J]. Science in China:SerD, 2004, 34(2):139-144. [沈承德, 孙彦敏, 易惟熙, 等. 丘陵草坡土壤10Be分布特征及土壤生成速率[J]. 中国科学D辑:地球科学, 2004, 34(2):139-144.]
    [66] Hurst M D, Mudd S M, Walcott R, et al. Using hilltop curvature to derive the spatial distribution of erosion rates[J]. Journal of Geophysical Research:Earth Surface, 2012, 117(F2) F02017:1-19.
    [67] Chiang S H, Hsu M L. Parameter calibration in a process-based soil depth estimation model assuming local steady state[J]. Journal of Geographical Sciences, 2006, 44:23-38.
    [68] Huggett R J. Soil landscape systems:A model of soil genesis[J]. Geoderma, 1975, 13(1):1-22.
    [69] Volobuev V R. Ecology of soils[J]. Soil Science, 1965, 100(2):148.
    [70] Rasmussen C, Troch P A, Chorover J, et al. An open system framework for integrating critical zone structure and function[J]. Biogeochemistry, 2011, 102(1):15-29.
    [71] Jenny H. Factors of soil formation:A system of quantitative pedology[M]. New York:Dover, 1994.
    [72] Simonson R W. Outline of a generalized theory of soil genesis[J]. Soil Science Society of America Journal, 1959, 23(2):152-156.
    [73] Runge E C A. Soil development sequences and energy models[J]. Soil Science, 1973, 115(3):183-193.
    [74] Rosenbloom N A, Doney S C, Schimel D S. Geomorphic evolution of soil texture and organic matter in eroding landscapes[J]. Global Biogeochemical Cycles, 2001, 15(2):365-381.
    [75] Meurer K, Barron J, Chenu C, et al. A framework for modelling soil structure dynamics induced by biological activity[J]. Global Change Biology, 2020, 26(10):5382-5403.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

刘金涛,赵薇,刘彧.土壤厚度演化模型理论方法研究进展[J].土壤学报,2024,61(2):319-330. DOI:10.11766/trxb202207070374 LIU Jintao, ZHAO Wei, LIU Yu. Modelling Soil Thickness Evolution: Advancements and Challenges[J]. Acta Pedologica Sinica,2024,61(2):319-330.

复制
分享
文章指标
  • 点击次数:605
  • 下载次数: 1999
  • HTML阅读次数: 1341
  • 引用次数: 0
历史
  • 收稿日期:2022-07-07
  • 最后修改日期:2023-02-20
  • 录用日期:2023-04-10
  • 在线发布日期: 2023-04-19
  • 出版日期: 2024-03-15
文章二维码