河套灌区盐渍土壤原核生物群落特征及其潜在功能研究
作者:
中图分类号:

S152.4

基金项目:

国家重点研发计划项目(2021YFC3201201、2021YFD1900602)和国家自然科学基金项目(41977015)资助


The Distribution and Potential Functions of Prokaryotic Communities in Saline Soils of Hetao Irrigation District
Author:
Fund Project:

the National Key Research and Development Program of China(Nos. 2021YFC3201201, 2021YFD1900602),the National Natural Science Foundation of China(Nos. 41977015)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [40]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    辨明盐渍土原核生物群落特征及潜在功能对盐渍化程度和土地利用类型的响应,对理解盐渍土壤元素循环与植物互馈效应、构建良性循环农田生态系统具有重要意义。以河套灌区不同盐渍化程度的农田和荒地为研究对象,结合土壤基本理化性质分析与原核生物高通量测序方法,探究盐渍化土壤中原核生物的群落组成特征、环境驱动要素及其潜在功能。结果表明,农田土壤盐渍化程度显著低于荒地,其原核生物多样性更高,尤其是富集了大量农田特有的ASV(扩增子序列变体,amplicon sequence variant);原核生物的群落组成在农田和荒地间差异最大,并主要受到土壤电导率(EC)、pH和有机质(SOM)等环境因子的驱动。基于群落组成和功能预测的差异分析结果表明,盐渍化农田中具有较高丰度的氮循环相关微生物以及潜在的植物促生菌,如亚硝化球菌(Nitrososphaeraceae)、亚硝化单胞菌(Nitrososmonadaceae)、诺卡氏菌(Nocardioidaceae)和鞘氨醇单胞菌(Sphingomonadaceae)等;而盐碱荒地富集了以盐杆菌(Halobacterota)为代表的古菌和具有烃类化合物分解功能的原核生物类群。本研究对于明晰北方灌区盐渍土原核生物群落特征与土壤微环境的互馈关系、揭示土壤养分周转对提升土壤-植物-微生物跨域有益协同具有指导意义。

    Abstract:

    【Objective】 Soil salinization affects the quality of arable land and threatens the sustainable development of agriculture. As an important indicator of soil environment, soil microbes play important roles in driving soil nutrient cycling and maintaining ecosystem productivity. Therefore, deciphering the response of microbial communities and their potential functions to the degrees of soil salinization and land use type is of great significance for understanding the elemental cycling processes and interactions with plants in a saline-affected agroecosystem.【Method】 In this study, we explored the composition and potential functions of prokaryotic communities and their environmental drivers in saline soils from farmlands and wastelands with different salinization degrees, by combining prokaryotic high-throughput sequencing and soil physicochemical analysis methods in a typical saline area of Hetao Irrigation District of China. 【Result】 Compared with wastelands, the farmlands exhibited a lower soil salinity but a higher content of soil organic matter (SOM) (P < 0.05). In farmlands with different salinity levels, mild saline soil had a significantly higher yield of sunflower than the moderate and severe saline soils. Meanwhile, the saline soils in farmland exhibited a higher prokaryotic α diversity than that in the salinized wasteland, with a large number of unique ASVs (Amplicon sequence variants). The prokaryotic α diversity indexes were positively associated with SOM contents but negatively correlated with soil pH, EC, moisture and bulk density. Non-metric multidimensional scaling (NMDS) analysis based on the β diversity of prokaryotes further indicated that the prokaryotic community was mainly differentiated between farmland and wasteland, followed by the soil salinity level in each land use type. Specifically, the prokaryotic community was dominantly driven by environmental factors including EC, pH and SOM, as suggested by canonical correlation analysis (CCA) and Mantel test. Moreover, the phylum including Acidobacteriota, Chloroflexi, Planctomycetota, Crenarchaeota, and Myxococcota in farmlands showed significantly higher abundance than wastelands, whereas Halobacterota and Bacteroidota showed an opposite trend, with Halobacterota only detectable in wastelands and relative abundance ranging from 10.13% to 39.41%. Through predicting the potential functions of the prokaryotic community, we found that there were high abundances of nitrogen cycling-related microbes like Nitrososphaeraceae and Nitrososmonadaceae, and potential plant growth-promoting bacteria including Nocardioidaceae and Sphingomonadaceae in salinized farmlands. By contrast, the salinized wasteland enriched prokaryotic groups with potential hydrocarbon decomposition function.【Conclusion】 Our study indicates strong selection effects of different land use types on prokaryotic communities in salinized soil of Hetao Irrigation District, which has important implications for clarifying the feedback between prokaryotic community and physicochemical properties of saline soils, as well as revealing the synergy effect among soil-plant-microorganism for soil nutrient turnover and agricultural sustainability.

    参考文献
    [1] Wang Z Q, Zhu S Q, Yu R P, et al. Saline soil in China[M]. Beijing:Science Press, 1993:1-3. [王遵亲, 祝寿泉, 俞仁培, 等. 中国盐渍土. 北京:科学出版社, 1993:1-3.]
    [2] Yang J S. Development and prospect of the research on salt-affected soils in China[J]. Acta Pedologica Sinica, 2008, 45(5):837-845. [杨劲松. 中国盐渍土研究的发展历程与展望[J]. 土壤学报, 2008, 45(5):837-845.]
    [3] Zhang Y Q, Wang R P, Bai Q Y. Development and change of soil salinization in Hetao irrigation area of Inner Mongolia[J]. Journal of Irrigation and Drainage, 2018, 37(S1):118-122. [张义强, 王瑞萍, 白巧燕. 内蒙古河套灌区土壤盐碱化发展变化及治理效果研究[J]. 灌溉排水学报, 2018, 37(S1):118-122.]
    [4] Dendooven L, Alcántara-Hernández R J, Valenzuela-Encinas C, et al. Dynamics of carbon and nitrogen in an extreme alkaline saline soil:A review[J]. Soil Biology & Biochemistry, 2010, 42(6):865-877.
    [5] Cuevas J, Daliakopoulos I N, del Moral F, et al. A review of soil-improving cropping systems for soil salinization[J]. Agronomy, 2019, 9(6):295.
    [6] Teng Y, Zhang Z X, Si Z J, et al. Impact of vibration-tillage of subsoils on their water retention curves[J]. Journal of Irrigation and Drainage, 2017, 36(5):52-58. [滕云, 张忠学, 司振江, 等. 振动深松耕作对不同类型土壤水分特征曲线影响研究[J]. 灌溉排水学报, 2017, 36(5):52-58.]
    [7] Zhou L, Wang Y G, Li Y, et al. Effects of cultivation on soil salinity in upper soil profiles of the saline-alkali land[J]. Arid Land Geography, 2013, 36(2):285-291. [周丽, 王玉刚, 李彦, 等. 盐碱荒地开垦年限对表层土壤盐分的影响[J]. 干旱区地理, 2013, 36(2):285-291.]
    [8] Ren X Y, Chen Y Y, Liang X H. Effect of Fenlong tillage on soil nutrients and maize yield in saline land of Ningxia Yinbei irrigation area[J]. Southwest China Journal of Agricultural Sciences, 2022, 35(5):1063-1068. [任晓月, 陈彦云, 梁新华. 粉垄耕作对宁夏银北盐碱地土壤养分及玉米产量的影响[J]. 西南农业学报, 2022, 35(5):1063-1068.]
    [9] Wu J Y, Liu J H, Li Q, et al. Effect of tillage techniques and planting depth on saline-alkali tolerance of oats in Inner Mongolia[J]. Agricultural Research in the Arid Areas, 2009, 27(2):138-141, 147. [武俊英, 刘景辉, 李倩, 等. 内蒙古地区不同耕作方式与播种深度燕麦耐盐碱性分析[J]. 干旱地区农业研究, 2009, 27(2):138-141, 147.]
    [10] Rath K M, Rousk J. Salt effects on the soil microbial decomposer community and their role in organic carbon cycling:A review[J]. Soil Biology & Biochemistry, 2015, 81:108-123.
    [11] Freedman Z B, Romanowicz K J, Upchurch R A, et al. Differential responses of total and active soil microbial communities to long-term experimental N deposition[J]. Soil Biology & Biochemistry, 2015, 90:275-282.
    [12] Delgado-Baquerizo M, Oliverio A M, Brewer T E, et al. A global atlas of the dominant bacteria found in soil[J]. Science, 2018, 359(6373):320-325.
    [13] Ouyang Y, Norton J M, Stark J M, et al. Ammonia-oxidizing bacteria are more responsive than archaea to nitrogen source in an agricultural soil[J]. Soil Biology & Biochemistry, 2016, 96:4-15.
    [14] Mander C, Wakelin S, Young S, et al. Incidence and diversity of phosphate-solubilising bacteria are linked to phosphorus status in grassland soils[J]. Soil Biology & Biochemistry, 2012, 44(1):93-101.
    [15] Flemming H C, Wuertz S. Bacteria and archaea on Earth and their abundance in biofilms[J]. Nature Reviews Microbiology, 2019, 17(4):247-260.
    [16] He J Z, Zhang L M. Key processes and microbial mechanisms of soil nitrogen transformation[J]. Microbiology China, 2013, 40(1):98-108. [贺纪正, 张丽梅. 土壤氮素转化的关键微生物过程及机制[J]. 微生物学通报, 2013, 40(1):98-108.]
    [17] Kumar Arora N, Fatima T, Mishra J, et al. Halo-tolerant plant growth promoting rhizobacteria for improving productivity and remediation of saline soils[J]. Journal of Advanced Research, 2020, 26:69-82.
    [18] Chaparro J M, Sheflin A M, Manter D K, et al. Manipulating the soil microbiome to increase soil health and plant fertility[J]. Biology and Fertility of Soils, 2012, 48(5):489-499.
    [19] Schneider D, Engelhaupt M, Allen K, et al. Impact of lowland rainforest transformation on diversity and composition of soil prokaryotic communities in Sumatra(Indonesia) [J]. Frontiers in Microbiology, 2015, 6:1339.
    [20] Singh K. Microbial and enzyme activities of saline and sodic soils[J]. Land Degradation & Development, 2016, 27(3):706-718.
    [21] Rath K M, Fierer N, Murphy D V, et al. Linking bacterial community composition to soil salinity along environmental gradients[J]. The ISME Journal, 2019, 13(3):836-846.
    [22] Hu W G, Hou Q Q, Delgado-Baquerizo M, et al. Continental-scale niche differentiation of dominant topsoil archaea in drylands[J]. Environmental Microbiology, 2022, 24(11):5483-5497.
    [23] Wu K N, Zhao R. Soil texture classification and its application in China[J]. Acta Pedologica Sinica, 2019, 56(1):227-241. [吴克宁, 赵瑞. 土壤质地分类及其在我国应用探讨[J]. 土壤学报, 2019, 56(1):227-241.]
    [24] Bao S D. Soil and agricultural chemistry analysis[M]. 3rd ed. Beijing:China Agriculture Press, 2000. [鲍士旦. 土壤农化分析[M]. 3版. 北京:中国农业出版社, 2000.]
    [25] Lu R K. Analytical methods for soil and agro-chemistry[M]. Beijing:China Agricultural Science and Technology Press, 2000. [鲁如坤. 土壤农业化学分析方法[M]. 北京:中国农业科技出版社, 2000.]
    [26] Walters W, Hyde E R, Berg-Lyons D, et al. Improved bacterial 16S rRNA gene(V4 and V4-5) and fungal internal transcribed spacer marker gene primers for microbial community surveys[J]. mSystems, 2015, 1(1):e00009-e00015.
    [27] Chen S F, Zhou Y Q, Chen Y R, et al. Fastp:An ultra-fast all-in-one FASTQ preprocessor[J]. Bioinformatics, 2018, 34(17):i884-i890.
    [28] Magoč T, Salzberg S L. FLASH:Fast length adjustment of short reads to improve genome assemblies[J]. Bioinformatics, 2011, 27(21):2957-2963.
    [29] Callahan B J, McMurdie P J, Rosen M J, et al. DADA2:High-resolution sample inference from Illumina amplicon data[J]. Nature Methods, 2016, 13(7):581-583.
    [30] Oksanen J, Kindt R, Legendre P, et al. The vegan package[J]. Community Ecology Package, 2009, 10:631-637.
    [31] Louca S, Parfrey L W, Doebeli M. Decoupling function and taxonomy in the global ocean microbiome[J]. Science, 2016, 353(6305):1272-1277.
    [32] Wong V N L, Dalal R C, Greene R S. Carbon dynamics of sodic and saline soils following gypsum and organic material additions:A laboratory incubation[J]. Applied Soil Ecology, 2009, 41(1):29-40.
    [33] Gao S, Yang J S, Yao R J, et al. Effects of soil amelioration measures mitigating soil salinity and improving crop P uptake in coastal area of north Jiangsu[J]. Acta Pedologica Sinica, 2020, 57(5):1219-1229. [高珊, 杨劲松, 姚荣江, 等. 改良措施对苏北盐渍土盐碱障碍和作物磷素吸收的调控[J]. 土壤学报, 2020, 57(5):1219-1229.]
    [34] Ghosh U, Thapa R, Desutter T, et al. Saline-sodic soils:Potential sources of nitrous oxide and carbon dioxide emissions?[J]. Pedosphere, 2017, 27(1):65-75.
    [35] Konings W N, Albers S V, Koning S, et al. The cell membrane plays a crucial role in survival of bacteria and archaea in extreme environments[J]. Antonie Van Leeuwenhoek, 2002, 81(1):61-72.
    [36] Shu W S, Huang L N. Microbial diversity in extreme environments[J]. Nature Reviews Microbiology, 2022, 20(4):219-235.
    [37] Pandit A S, Joshi M N, Bhargava P, et al. A snapshot of microbial communities from the Kutch:One of the largest salt deserts in the World[J]. Extremophiles, 2015, 19(5):973-987.
    [38] Liu J J, Sui Y Y, Yu Z H, et al. High throughput sequencing analysis of biogeographical distribution of bacterial communities in the black soils of northeast China[J]. Soil Biology & Biochemistry, 2014, 70:113-122.
    [39] Wang W H, Wang N, Dang K K, et al. Long-term nitrogen application decreases the abundance and copy number of predatory myxobacteria and alters the myxobacterial community structure in the soil[J]. Science of the Total Environment, 2020, 708:135114.
    [40] Wang J, Cheng Y, Cai Z C, et al. Effects of long-term fertilization on key processes of soil nitrogen cycling in agricultural soil:A review[J]. Acta Pedologica Sinica, 2016, 53(2):292-304. [王敬, 程谊, 蔡祖聪, 等. 长期施肥对农田土壤氮素关键转化过程的影响[J]. 土壤学报, 2016, 53(2):292-304.]
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张璐,杨劲松,姚荣江,王相平,谢文萍.河套灌区盐渍土壤原核生物群落特征及其潜在功能研究[J].土壤学报,2024,61(2):527-538. DOI:10.11766/trxb202209010393 ZHANG Lu, YANG Jingsong, YAO Rongjiang, WANG Xiangping, XIE Wenping. The Distribution and Potential Functions of Prokaryotic Communities in Saline Soils of Hetao Irrigation District[J]. Acta Pedologica Sinica,2024,61(2):527-538.

复制
分享
文章指标
  • 点击次数:273
  • 下载次数: 1258
  • HTML阅读次数: 636
  • 引用次数: 0
历史
  • 收稿日期:2022-09-01
  • 最后修改日期:2022-12-19
  • 录用日期:2023-03-25
  • 在线发布日期: 2023-04-06
  • 出版日期: 2024-03-15
文章二维码