土壤微生物影响土壤健康的作用机制研究进展
作者:
中图分类号:

S154.3

基金项目:

国家自然科学基金资助项目(42207415)、浙江省三农九方项目(2022SNJF001)、中央级公益性科研院所基本科研业务专项(CPSIBRF-CNRRI-202202)和水稻生物学国家重点实验室自主课题(2020ZZKT10402)资助


Research Progress on the Mechanism by which Soil Microorganisms Affect Soil Health
Author:
Fund Project:

National Natural Science Foundation of China(42207415); Science and Technology Cooperation Project of Zhejiang Province, China (2022SNJF001); National Natural Science Foundation of China(CPSIBRF-CNRRI-202202) and Independent Project of State Key Laboratory of Rice Biology (2020ZZKT10402).

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [119]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    土壤健康是农业可持续发展的中心主题。土壤微生物参与土壤生态功能、环境功能和免疫功能协同驱动土壤生命系统运转,是维持土壤健康的核心与关键。了解不同微生物介导的土壤健康调控机制对有效利用这些核心微生物维持和改善土壤健康至关重要。本文围绕微生物参与调节土壤碳循环、养分循环,改变土壤结构、抑制植物病虫害、污染控制等主要生物过程系统梳理了微生物在调控土壤健康中的重要作用,以及微生物作为土壤健康的敏感指标对土壤健康的指示与预警作用。强调未来应加强驱动土壤健康特定功能以及多个生物过程的核心微生物组信息数据库挖掘、构建与生产应用研究,为定向利用微生物改善农业土壤生态系统功能、维持土壤健康以及保障土壤可持续发展提供科学依据。

    Abstract:

    Soil health is the central theme of sustainable agricultural development. Soil microorganisms cooperatively drive the soil life system by regulating soil ecological functions, environmental functions and immunologic functions, which are the keys to maintaining soil health. Understanding the mechanisms of soil microorganisms mediated soil health is essential to effectively utilize these core microorganisms to maintain and improve soil health. Thus, soil functions, such as soil carbon cycling, nutrient cycling, soil structure regulation, plant disease and insect inhibition and contamination control mediated by soil microorganisms are reviewed to summarize their roles in maintaining or enhancing soil health. Furthermore, as a sensitive indicator of soil health, the roles of soil microorganisms in soil health indication and warning were also studied. Research about mining, construction and application of the core microbiome information database that drives the specific function of soil health and multiple biological processes should be strengthened in the future. This will help to provide a scientific basis for improving the function of agricultural soil ecosystems using soil microorganisms, maintaining soil health and soil sustainable development.

    参考文献
    [1] Zhang J L, Zhang J Z, Shen J B, et al. Soil health and agriculture green development:Opportunities and challenges[J]. Acta Pedologica Sinica, 2020, 57(4):783-796. [张俊伶, 张江周, 申建波, 等. 土壤健康与农业绿色发展:机遇与对策[J]. 土壤学报, 2020, 57(4):783-796.]
    [2] Zhang J Z, Li Y Z, Li Y, et al. Advances in the indicator system and evaluation approaches of soil health[J]. Acta Pedologica Sinica, 2022, 59(3):603-616. [张江周, 李奕赞, 李颖, 等. 土壤健康指标体系与评价方法研究进展[J]. 土壤学报, 2022, 59(3):603-616.]
    [3] Li X Z, Luo Y M, Hou D Y. The Indicators, framework and procedures for soil health:a critical review[J]. Acta Pedologica Sinica, 2022, 59(3):617-625. [李烜桢, 骆永明, 侯德义. 土壤健康评估指标、框架及程序研究进展[J]. 土壤学报, 2022, 59(3):617-625.]
    [4] Li Y Z, Zhang J Z, Jia J Y, et al. Research progresses on farmland soil ecosystem multifunctionality[J]. Acta Pedologica Sinica, 2022, 59(5):1177-1189. [李奕赞, 张江周, 贾吉玉, 等. 土壤生态系统多功能性研究进展[J]. 土壤学报, 2022, 59(5):1177-1189.]
    [5] Cai Z C. Discussion on the strategies for development of the subdiscipline of soil fertility and soil nutrient cycling for the 14th five-year plan[J]. Acta Pedologica Sinica, 2020, 57(5):1128-1136. [蔡祖聪. 浅谈"十四五"土壤肥力与土壤养分循环分支学科发展战略[J]. 土壤学报, 2020, 57(5):1128-1136.]
    [6] Chen Q L, Cui H L, Su J Q, et al. Antibiotic resistomes in plant microbiomes[J]. Trends in Plant Science, 2019, 24(6):530-541.
    [7] Zhu Y G, Peng J J, Wei Z, et al. Linking the soil microbiome to soil health[J]. Scientia Sinica:Vitae, 2021, 51(1):1-11. [朱永官, 彭静静, 韦中, 等. 土壤微生物组与土壤健康[J]. 中国科学:生命科学, 2021, 51(1):1-11.]
    [8] Jian S Y, Li J W, Chen J, et al. Soil extracellular enzyme activities, soil carbon and nitrogen storage under nitrogen fertilization:A meta-analysis[J]. Soil Biology & Biochemistry, 2016, 101:32-43.
    [9] Wang C, Morrissey E M, Mau R L, et al. The temperature sensitivity of soil:Microbial biodiversity, growth, and carbon mineralization[J]. The ISME Journal, 2021, 15(9):2738-2747.
    [10] Liang C, Zhu X F. The soil microbial carbon pump as a new concept for terrestrial carbon sequestration[J]. Scientia Sinica:Terrae, 2021, 51(5):680-695. [梁超, 朱雪峰. 土壤微生物碳泵储碳机制概论[J]. 中国科学:地球科学, 2021, 51(5):680-695.]
    [11] Liang C, Amelung W, Lehmann J, et al. Quantitative assessment of microbial necromass contribution to soil organic matter[J]. Global Change Biology, 2019, 25(11):3578-3590.
    [12] Wang B R, An S S, Liang C, et al. Microbial necromass as the source of soil organic carbon in global ecosystems[J]. Soil Biology & Biochemistry, 2021, 162:108422.
    [13] Zhao X C, Tian P, Liu S G, et al. Mean annual temperature and carbon availability respectively controlled the contributions of bacterial and fungal residues to organic carbon accumulation in topsoil across China's forests[J]. Global Ecology and Biogeography, 2023, 32(1):120-131.
    [14] Wang C, Qu L R, Yang L M, et al. Large-scale importance of microbial carbon use efficiency and necromass to soil organic carbon[J]. Global Change Biology, 2021, 27(10):2039-2048.
    [15] Wu J J, Cheng X L, Liu G H. Increased soil organic carbon response to fertilization is associated with increasing microbial carbon use efficiency:Data synthesis[J]. Soil Biology & Biochemistry, 2022, 171:108731.
    [16] Kallenbach C M, Frey S D, Grandy A S. Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls[J]. Nature Communications, 2016, 7(1):13630.
    [17] Wu W C, Dijkstra P, Hungate B A, et al. In situ diversity of metabolism and carbon use efficiency among soil bacteria[J]. Science Advances, 2022, 8(44):eabq3958.
    [18] Feng X H, Qin S Q, Zhang D Y, et al. Nitrogen input enhances microbial carbon use efficiency by altering plant-microbe-mineral interactions [J]. Global Change Biology, 2022. 28(16):4845-4860.
    [19] Xiao K Q, Ge T D, Wu X H, et al. Metagenomic and 14C tracing evidence for autotrophic microbial CO2 fixation in paddy soils[J]. Environmental Microbiology, 2021, 23(2):924-933.
    [20] Chen H, Wang F, Kong W D, et al. Soil microbial CO2 fixation plays a significant role in terrestrial carbon sink in a dryland ecosystem:A four-year small-scale field-plot observation on the Tibetan Plateau[J]. Science of the Total Environment, 2021, 761:143282.
    [21] Thauer R K. Microbiology. A fifth pathway of carbon fixation[J]. Science, 2007, 318(5857):1732-1733.
    [22] Yuan H Z, Ge T D, Chen C Y, et al. Significant role for microbial autotrophy in the sequestration of soil carbon[J]. Applied and Environmental Microbiology, 2012, 78(7):2328-2336.
    [23] Huang Q, Huang Y M, Wang B R, et al. Metabolic pathways of CO2 fixing microorganisms determined C-fixation rates in grassland soils along the precipitation gradient[J]. Soil Biology & Biochemistry, 2022, 172:108764.
    [24] Liu H M, Hai X, An K R, et al. Effects of different fertilization regimes on community structure diversity of CO2-assimilating bacteria in maize field of fluvo-aquic soil in North China[J]. Ecology and Environmental Sciences, 2022, 31(4):715-722. [刘红梅, 海香, 安克锐, 等. 不同施肥措施对华北潮土区玉米田土壤固碳细菌群落结构多样性的影响[J]. 生态环境学报, 2022, 31(4):715-722.]
    [25] Li Z W, Tong D, Nie X D, et al. New insight into soil carbon fixation rate:The intensive co-occurrence network of autotrophic bacteria increases the carbon fixation rate in depositional sites[J]. Agriculture, Ecosystems & Environment, 2021, 320:107579.
    [26] Zhao K, Kong W D, Wang F, et al. Desert and steppe soils exhibit lower autotrophic microbial abundance but higher atmospheric CO2 fixation capacity than meadow soils[J]. Soil Biology & Biochemistry, 2018, 127:230-238.
    [27] Herridge D F, Peoples M B, Boddey R M. Global inputs of biological nitrogen fixation in agricultural systems[J]. Plant and Soil, 2008, 311(1):1-18.
    [28] Klimasmith I M, Kent A D. Micromanaging the nitrogen cycle in agroecosystems[J]. Trends in Microbiology, 2022, 30(11):1045-1055.
    [29] Xie Z B, Zhang Y H, Wang H. Advances and perspectives in paddy biological nitrogen fixation[J]. Acta Pedologica Sinica, 2020, 57(3):540-546. [谢祖彬, 张燕辉, 王慧. 稻田生物固氮研究进展及方向[J]. 土壤学报, 2020, 57(3):540-546.]
    [30] Lin Y X, Ye G P, Liu D Y, et al. Long-term application of lime or pig manure rather than plant residues suppressed diazotroph abundance and diversity and altered community structure in an acidic Ultisol[J]. Soil Biology & Biochemistry, 2018, 123:218-228.
    [31] Bloch S E, Clark R, Gottlieb S S, et al. Biological nitrogen fixation in maize:Optimizing nitrogenase expression in a root-associated diazotroph[J]. Journal of Experimental Botany, 2020, 71(15):4591-4603.
    [32] Charyulu P B B N, Rao V R. Influence of carbon substrates and moisture regime on nitrogen fixation in paddy soils[J]. Soil Biology & Biochemistry, 1981, 13(1):39-42.
    [33] Kuypers M M M, Marchant H K, Kartal B. The microbial nitrogen-cycling network[J]. Nature Reviews Microbiology, 2018, 16(5):263-276.
    [34] Hink L, Lycus P, Gubry-Rangin C, et al. Kinetics of NH3-oxidation, NO-turnover, N2O-production and electron flow during oxygen depletion in model bacterial and archaeal ammonia oxidisers[J]. Environmental Microbiology, 2017, 19(12):4882-4896.
    [35] Bakken L R, Frostegård Å. Emerging options for mitigating N2O emissions from food production by manipulating the soil microbiota[J]. Current Opinion in Environmental Sustainability, 2020, 47:89-94.
    [36] You L C, Ros G H, Chen Y L, et al. Global meta-analysis of terrestrial nitrous oxide emissions and associated functional genes under nitrogen addition[J]. Soil Biology & Biochemistry, 2022, 165:108523.
    [37] Wang W Y, Hou Y T, Pan W H, et al. Continuous application of conservation tillage affects in situ N2O emissions and nitrogen cycling gene abundances following nitrogen fertilization[J]. Soil Biology & Biochemistry, 2021, 157:108239.
    [38] Coskun D, Britto D T, Shi W M, et al. Nitrogen transformations in modern agriculture and the role of biological nitrification inhibition[J]. Nature Plants, 2017, 3(6):17074.
    [39] Yao Q M, Li Z, Song Y, et al. Community proteogenomics reveals the systemic impact of phosphorus availability on microbial functions in tropical soil[J]. Nature Ecology & Evolution, 2018, 2(3):499-509.
    [40] Sharma S B, Sayyed R Z, Trivedi M H, et al. Phosphate solubilizing microbes:Sustainable approach for managing phosphorus deficiency in agricultural soils[J]. SpringerPlus, 2013, 2(1):587.
    [41] Rodríguez H, Fraga R, Gonzalez T, et al. Genetics of phosphate solubilization and its potential applications for improving plant growth-promoting bacteria[J]. Plant and Soil, 2006, 287(1):15-21.
    [42] Song H, Dharmasena M N, Wang C, et al. Structure and activity of PPX/GppA homologs from Escherichia coli and Helicobacter pylori[J]. The FEBS Journal, 2020, 287(9):1865-1885.
    [43] Wei X M, Hu Y J, Razavi B S, et al. Rare taxa of alkaline phosphomonoesterase-harboring microorganisms mediate soil phosphorus mineralization[J]. Soil Biology & Biochemistry, 2019, 131:62-70.
    [44] Dai Z M, Liu G F, Chen H H, et al. Long-term nutrient inputs shift soil microbial functional profiles of phosphorus cycling in diverse agroecosystems[J]. The ISME Journal, 2020, 14(3):757-770.
    [45] Huang Y L, Dai Z M, Lin J H, et al. Labile carbon facilitated phosphorus solubilization as regulated by bacterial and fungal communities in Zea mays[J]. Soil Biology & Biochemistry, 2021, 163:108465.
    [46] Oliverio A M, Bissett A, McGuire K, et al. The role of phosphorus limitation in shaping soil bacterial communities and their metabolic capabilities[J]. mBio, 2020, 11(5):e01718-20.
    [47] Bergkemper F, Schöler A, Engel M, et al. Phosphorus depletion in forest soils shapes bacterial communities towards phosphorus recycling systems[J]. Environmental Microbiology, 2016, 18(6):1988-2000.
    [48] Lu J L, Jia P, Feng S W, et al. Remarkable effects of microbial factors on soil phosphorus bioavailability:A country-scale study[J]. Global Change Biology, 2022, 28(14):4459-4471.
    [49] Park Y, Solhtalab M, Thongsomboon W, et al. Strategies of organic phosphorus recycling by soil bacteria:Acquisition, metabolism, and regulation[J]. Environmental Microbiology Reports, 2022, 14:3-24.
    [50] Wilpiszeski R L, Aufrecht J A, Retterer S T, et al. Soil aggregate microbial communities:Towards understanding microbiome interactions at biologically relevant scales[J]. Applied and Environmental Microbiology, 2019, 85(14):e00324-19.
    [51] Lehmann A, Zheng W S, Rillig M C. Soil biota contributions to soil aggregation[J]. Nature Ecology & Evolution, 2017, 1(12):1828-1835.
    [52] Zhu X F, Jackson R D, DeLucia E H, et al. The soil microbial carbon pump:From conceptual insights to empirical assessments[J]. Global Change Biology, 2020, 26(11):6032-6039.
    [53] Merino-Martín L, Stokes A, Gweon H S, et al. Interacting effects of land use type, soil microbes and plant traits on aggregate stability[J]. Soil Biology & Biochemistry, 2021, 154:108072.
    [54] Coban O, De Deyn G B, van der Ploeg M. Soil microbiota as game-changers in restoration of degraded lands[J]. Science, 2022, 375(6584):abe0725.
    [55] Rashid M I, Mujawar L H, Shahzad T, et al. Bacteria and fungi can contribute to nutrients bioavailability and aggregate formation in degraded soils[J]. Microbiological Research, 2016, 183:26-41.
    [56] Deng J Z, Orner E P, Chau J F, et al. Synergistic effects of soil microstructure and bacterial EPS on drying rate in emulated soil micromodels[J]. Soil Biology & Biochemistry, 2015, 83:116-124.
    [57] Olagoke F K, Bettermann A, Nguyen P T B, et al. Importance of substrate quality and clay content on microbial extracellular polymeric substances production and aggregate stability in soils[J]. Biology and Fertility of Soils, 2022, 58(4):435-457.
    [58] Liu Y L, Wang P, Wang J K. Formation and stability mechanism of soil aggregates:Progress and prospect[J]. Acta Pedologica Sinica, 2023, 60(3):627-643. [刘亚龙, 王萍, 汪景宽. 土壤团聚体的形成和稳定机制:研究进展与展望[J]. 土壤学报, 2023, 60(3):627-643.]
    [59] Rillig M C. Arbuscular mycorrhizae, glomalin, and soil aggregation[J]. Canadian Journal of Soil Science, 2004, 84(4):355-363.
    [60] Wei Z, Shen Z Z, Yang T J, et al. From suppressive soil to rhizosphere immunity:Towards an ecosystem thinking for soil-borne pathogen control[J]. Acta Pedologica Sinica, 2021, 58(4):814-824. [韦中, 沈宗专, 杨天杰, 等. 从抑病土壤到根际免疫:概念提出与发展思考[J]. 土壤学报, 2021, 58(4):814-824.]
    [61] Irikiin Y, Nishiyama M, Otsuka S, et al. Rhizobacterial community-level, sole carbon source utilization pattern affects the delay in the bacterial wilt of tomato grown in rhizobacterial community model system[J]. Applied Soil Ecology, 2006, 34(1):27-32.
    [62] Mendes L W, Mendes R, Raaijmakers J M, et al. Breeding for soil-borne pathogen resistance impacts active rhizosphere microbiome of common bean[J]. The ISME Journal, 2018, 12(12):3038-3042.
    [63] Hu J, Wei Z, Friman V P, et al. Probiotic diversity enhances rhizosphere microbiome function and plant disease suppression[J]. mBio, 2016, 7(6):e01790-16.
    [64] Wei Z, Yang T J, Friman V P, et al. Trophic network architecture of root-associated bacterial communities determines pathogen invasion and plant health[J]. Nature Communications, 2015, 6(1):8413.
    [65] Zhang N, Nunan N, Hirsch P R, et al. Theory of microbial coexistence in promoting soil-plant ecosystem health[J]. Biology and Fertility of Soils, 2021, 57(7):897-911.
    [66] Tao C Y, Li R, Xiong W, et al. Bio-organic fertilizers stimulate indigenous soil Pseudomonas populations to enhance plant disease suppression[J]. Microbiome, 2020, 8(1):137.
    [67] Badri D V, Zolla G, Bakker M G, et al. Potential impact of soil microbiomes on the leaf metabolome and on herbivore feeding behavior[J]. New Phytologist, 2013, 198(1):264-273.
    [68] Jaber L R, Enkerli J. Effect of seed treatment duration on growth and colonization of Vicia faba by endophytic Beauveria bassiana and Metarhizium brunneum[J]. Biological Control, 2016, 103:187-195.
    [69] Muvea A M, Meyhöfer R, Subramanian S, et al. Colonization of onions by endophytic fungi and their impacts on the biology of Thrips tabaci[J]. PLoS One, 2014, 9(9):e108242.
    [70] Kos M, Tuijl M A B, de Roo J, et al. Species-specific plant-soil feedback effects on above-ground plant-insect interactions[J]. Journal of Ecology, 2015, 103(4):904-914.
    [71] Blundell R, Schmidt J E, Igwe A, et al. Organic management promotes natural pest control through altered plant resistance to insects[J]. Nature Plants, 2020, 6(5):483-491.
    [72] Sun Y Z, Duan C X, Cao N, et al. Biodegradable and conventional microplastics exhibit distinct microbiome, functionality, and metabolome changes in soil[J]. Journal of Hazardous Materials, 2022, 424:127282.
    [73] Huang Y, Zhao Y R, Wang J, et al. LDPE microplastic films alter microbial community composition and enzymatic activities in soil[J]. Environmental Pollution, 2019, 254:112983.
    [74] Sander M. Biodegradation of polymeric mulch films in agricultural soils:Concepts, knowledge gaps, and future research directions[J]. Environmental Science & Technology, 2019, 53(5):2304-2315.
    [75] Yang W W, Cheng P, Adams C A, et al. Effects of microplastics on plant growth and arbuscular mycorrhizal fungal communities in a soil spiked with ZnO nanoparticles[J]. Soil Biology & Biochemistry, 2021, 155:108179.
    [76] Rillig M C, Lehmann A. Microplastic in terrestrial ecosystems[J]. Science, 2020, 368(6498):1430-1431.
    [77] Wan Y, Wu C X, Xue Q, et al. Effects of plastic contamination on water evaporation and desiccation cracking in soil[J]. Science of the Total Environment, 2019, 654:576-582.
    [78] Rubol S, Manzoni S, Bellin A, et al. Modeling soil moisture and oxygen effects on soil biogeochemical cycles including dissimilatory nitrate reduction to ammonium (DNRA) [J]. Advances in Water Resources, 2013, 62:106-124.
    [79] Zhu D, Ma J, Li G, et al. Soil plastispheres as hotspots of antibiotic resistance genes and potential pathogens[J]. The ISME Journal, 2022, 16(2):521-532.
    [80] Muhonja C N, Makonde H, Magoma G, et al. Biodegradability of polyethylene by bacteria and fungi from Dandora dumpsite Nairobi-Kenya[J]. PLoS One, 2018, 13(7):e0198446.
    [81] Park S Y, Kim C G. Biodegradation of micro-polyethylene particles by bacterial colonization of a mixed microbial consortium isolated from a landfill site[J]. Chemosphere, 2019, 222:527-533.
    [82] Zhang X Y, Li Y, Ouyang D, et al. Systematical review of interactions between microplastics and microorganisms in the soil environment[J]. Journal of Hazardous Materials, 2021, 418:126288.
    [83] Teuten E L, Saquing J M, Knappe D R U, et al. Transport and release of chemicals from plastics to the environment and to wildlife[J]. Philosophical Transactions:Biological Sciences, 2009, 364(1526):2027-2045.
    [84] Wei R, Zimmermann W. Microbial enzymes for the recycling of recalcitrant petroleum-based plastics:How far are we?[J]. Microbial Biotechnology, 2017, 10(6):1308-1322.
    [85] You X X, Wang S, Li G, et al. Microplastics in the soil:A review of distribution, anthropogenic impact, and interaction with soil microorganisms based on meta-analysis[J]. Science of the Total Environment, 2022, 832:154975.
    [86] Cosgrove L, McGeechan P L, Handley P S, et al. Effect of biostimulation and bioaugmentation on degradation of polyurethane buried in soil[J]. Applied and Environmental Microbiology, 2010, 76(3):810-819.
    [87] Sánchez C. Fungal potential for the degradation of petroleum-based polymers:An overview of macro-and microplastics biodegradation[J]. Biotechnology Advances, 2020, 40:107501.
    [88] Tribedi P, Sil A K. Cell surface hydrophobicity:A key component in the degradation of polyethylene succinate by Pseudomonas sp. AKS2[J]. Journal of Applied Microbiology, 2014, 116(2):295-303.
    [89] Mosa K A, Saadoun I, Kumar K, et al. Potential biotechnological strategies for the cleanup of heavy metals and metalloids[J]. Frontiers in Plant Science, 2016, 7:303.
    [90] Ayangbenro A S, Babalola O O. A new strategy for heavy metal polluted environments:A review of microbial biosorbents[J]. International Journal of Environmental Research and Public Health, 2017, 14(1):94.
    [91] Liu Y G, Feng B Y, Fan T, et al. Study on the biosorption of heavy metals by fungi[J]. Journal of Hunan University:Natural Sciences, 2008, 35(1):71-74. [刘云国, 冯宝莹, 樊霆, 等. 真菌吸附重金属离子的研究[J]. 湖南大学学报:自然科学版, 2008, 35(1):71-74.]
    [92] Bai J, Yang X H, Du R Y, et al. Biosorption mechanisms involved in immobilization of soil Pb by Bacillus subtilis DBM in a multi-metal-contaminated soil[J]. Journal of Environmental Sciences, 2014, 26(10):2056-2064.
    [93] Wu S J, Zhou Z J, Zhu L, et al. Cd immobilization mechanisms in a Pseudomonas strain and its application in soil Cd remediation[J]. Journal of Hazardous Materials, 2022, 425:127919.
    [94] Song W J, Yang Y Y, Liang X J, et al. Influence of metals and metalloids on the composition and fluorescence quenching of the extracellular polymeric substances produced by the polymorphic fungus Aureobasidium pullulans[J]. Applied Microbiology and Biotechnology, 2020, 104(16):7155-7164.
    [95] Goyal N, Jain S C, Banerjee U C. Comparative studies on the microbial adsorption of heavy metals[J]. Advances in Environmental Research, 2003, 7(2):311-319.
    [96] Zhang J, Chen J, Wu Y F, et al. Oxidation of organoarsenicals and antimonite by a novel flavin monooxygenase widely present in soil bacteria[J]. Environmental Microbiology, 2022, 24(2):752-761.
    [97] Wang X H, Dong G Y, Liu X W, et al. Poly-γ-glutamic acid-producing bacteria reduced Cd uptake and effected the rhizosphere microbial communities of lettuce[J]. Journal of Hazardous Materials, 2020, 398:123146.
    [98] Song C, Zhou Y Q, Li Y Q, et al. Residue degradation and influencing factors of three neonicotinoids insecticides in soil[J]. Chinese Journal of Pesticide Science, 2016, 18(6):738-744. [宋超, 周杨全, 李义强, 等. 三种新烟碱类杀虫剂在土壤中的残留降解及影响因子[J]. 农药学学报, 2016, 18(6):738-744.]
    [99] Zhang Z. Study on the degradation of nicosulfuron by Bacillus subtilis YB1 and Aspergillus niger YF1[D]. Baoding, Hebei:Hebei Agricultural University, 2019. [张哲. 枯草芽孢杆菌YB1和黑曲霉YF1菌株对烟嘧磺隆的降解作用研究[D]. 河北保定:河北农业大学, 2019.]
    [100] Cheng M G, Chen D, Parales R E, et al. Oxygenases as powerful weapons in the microbial degradation of pesticides[J]. Annual Review of Microbiology, 2022, 76:325-348.
    [101] Purnomo A S, Sariwati A, Kamei I. Synergistic interaction of a consortium of the brown-rot fungus Fomitopsis pinicola and the bacterium Ralstonia pickettii for DDT biodegradation[J]. Heliyon, 2020, 6(6):e04027.
    [102] Lin Z Q, Pang S M, Zhou Z, et al. Novel pathway of acephate degradation by the microbial consortium ZQ01 and its potential for environmental bioremediation[J]. Journal of Hazardous Materials, 2022, 426:127841.
    [103] Wu J, Wang J Y, Li Z T, et al. Antibiotics and antibiotic resistance genes in agricultural soils:A systematic analysis[J]. Critical Reviews in Environmental Science and Technology, 2023, 53(7):847-864.
    [104] Zhu D, Chen Q L, Ding J, et al. Antibiotic resistance genes in the soil ecosystem and planetary health:Progress and prospect[J]. Scientia Sinica:Vitae, 2019, 49(12):1652-1663. [朱冬, 陈青林, 丁晶, 等. 土壤生态系统中抗生素抗性基因与星球健康:进展与展望[J]. 中国科学:生命科学, 2019, 49(12):1652-1663.]
    [105] Chen Q L, An X L, Zheng B X, et al. Loss of soil microbial diversity exacerbates spread of antibiotic resistance[J]. Soil Ecology Letters, 2019, 1(1):3-13.
    [106] Ye M, Su J Q, An X L, et al. Silencing the silent pandemic:Eliminating antimicrobial resistance by using bacteriophages[J]. Science China Life Sciences, 2022, 65(9):1890-1893.
    [107] Zhou X, Qiao M, Su J Q, et al. Turning pig manure into biochar can effectively mitigate antibiotic resistance genes as organic fertilizer[J]. Science of the Total Environment, 2019, 649:902-908.
    [108] Lin H, Sun W C, Yu Q G, et al. Acidic conditions enhance the removal of sulfonamide antibiotics and antibiotic resistance determinants in swine manure[J]. Environmental Pollution, 2020, 263:114439.
    [109] He Y J, Zhou K P, Rao Y X, et al. Environmental risks of antibiotics in soil and the related bioremediation technologies[J]. Chinese Journal of Biotechnology, 2021, 37(10):3487-3504. [何玉洁, 周凯萍, 饶怡璇, 等. 土壤中抗生素的环境风险及污染土壤的生物修复技术[J]. 生物工程学报, 2021, 37(10):3487-3504.]
    [110] Gao N, Liu C X, Xu Q M, et al. Simultaneous removal of ciprofloxacin, norfloxacin, sulfamethoxazole by co-producing oxidative enzymes system of Phanerochaete chrysosporium and Pycnoporus sanguineus[J]. Chemosphere, 2018, 195:146-155.
    [111] Poore G D, Kopylova E, Zhu Q Y, et al. Microbiome analyses of blood and tissues suggest cancer diagnostic approach[J]. Nature, 2020, 579(7800):567-574.
    [112]
    [112] Lau K E M, Washington V J, Fan V, et al. A novel bacterial community index to assess stream ecological health[J]. Freshwater Biology, 2015, 60(10):1988-2002.
    [113] Hermans S M, Buckley H L, Case B S, et al. Bacteria as emerging indicators of soil condition[J]. Applied and Environmental Microbiology, 2016, 83(1):e02826-16.
    [114] Thompson J, Johansen R, Dunbar J, et al. Machine learning to predict microbial community functions:An analysis of dissolved organic carbon from litter decomposition[J]. PLoS One, 2019, 14(7):e0215502.
    [115] Hermans S M, Buckley H L, Case B S, et al. Using soil bacterial communities to predict physico-chemical variables and soil quality[J]. Microbiome, 2020, 8(1):79.
    [116] Wilhelm R C, van Es H M, Buckley D H. Predicting measures of soil health using the microbiome and supervised machine learning[J]. Soil Biology & Biochemistry, 2022, 164:108472.
    [117] Yuan J, Wen T, Zhang H, et al. Predicting disease occurrence with high accuracy based on soil macroecological patterns of Fusarium wilt[J]. The ISME Journal, 2020, 14(12):2936-2950.
    [118] Toju H, Peay K G, Yamamichi M, et al. Core microbiomes for sustainable agroecosystems[J]. Nature Plants, 2018, 4(5):247-257.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

孔亚丽,秦华,朱春权,田文昊,朱晓芳,虞轶俊,张均华.土壤微生物影响土壤健康的作用机制研究进展[J].土壤学报,2024,61(2):331-347. DOI:10.11766/trxb202301200448 KONG Yali, QIN Hua, ZHU Chunquan, TIAN Wenhao, ZHU Xiaofang, YU Yijun, ZHANG Junhua. Research Progress on the Mechanism by which Soil Microorganisms Affect Soil Health[J]. Acta Pedologica Sinica,2024,61(2):331-347.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-01-20
  • 最后修改日期:2023-06-02
  • 录用日期:2023-06-19
  • 在线发布日期: 2023-06-20
  • 出版日期: 2024-03-15
文章二维码