不同无性系杉木人工林土壤氮素转化特征
作者:
基金项目:

福建省属公益类科研院所基本科研专项项目(2020R1009003)和福建省种业创新与产业化工程项目(ZYCX-LY-202101)共同资助


Characteristics of Soil Nitrogen Transformation in Different Clonal Chinese Fir Plantations
Author:
Fund Project:

Supported by the Basic Research Project of Fujian Provincial Public Research Institute of China (No. 2020R1009003) and the Innovation and Industrialization Development of Fujian Province, China( No. ZYCX-LY-202101)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [39]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为揭示福建省洋口林场不同无性系杉木人工林土壤氮素转化特征,以15年林龄的第三代优良组培材料和实生苗(包括洋003(Y003)、洋008(Y008)、洋020(Y020)、洋061(Y061)、洋062(Y062)、第2代种子园良种(Ysec)和无性系混系扦插苗(Ymix))共计7种无性系杉木人工林土壤为研究对象开展室内培养试验,测定培养期间土壤无机氮含量变化,进而计算不同无性系杉木人工林土壤的净矿化速率和净硝化速率。结果表明:不同无性系杉木人工林土壤的净矿化速率和净硝化速率均处于较低水平(净矿化速率和净硝化速率分别为-0.093~0.118 mg·kg-1·d-1和-0.021~0.051mg·kg-1·d-1)均处于较低水平,表明亚热带地区杉木人工林土壤的供氮能力较弱。但在不同无性系间氮净矿化和硝化速率均存在显著差异。Y061土壤的平均净矿化速率显著高于其他无性系人工林土壤,为0.118 mg·kg-1·d-1,其次为Ymix和Y062无性系,分别为0.046 mg·kg-1·d-1和0.033 mg·kg-1·d-1;而其他4种无性系土壤平均净矿化速率均为负值,表现为无机氮的净同化作用;对不同无性系杉木人工林土壤而言,Y008的净硝化速率最高,为0.051 mg·kg-1·d-1,其次为Ymix和Y020无性系,分别为0.003和0.007 mg·kg-1·d-1,其他4种土壤平均净硝化速率均为负值,表现为硝态氮的净同化作用,因而保氮能力强。综上,Y061和Y062两种无性系杉木人工林土壤的供氮能力和保氮水平显著高于其他无性系,而Y008土壤发生淋溶等氮素损失的风险高于其他无性系,在实际栽植中应当合理选择无性系树种以保证更好的土壤肥力供应。

    Abstract:

    ObjectiveThis study aimed to reveal the characteristics of soil nitrogen (N) transformation in different clonal Chinese fir plantations in Yangkou National Forest Farm of Fujian. This study provided theoretical basis for artificial nitrogen management and improved seed breeding of different clones of Chinese fir plantations.MethodAn incubation experiment was carried out with 7 different kinds of 15-year old third-generation excellent culture materials and seedlings (Y003, Y008, Y020, Y061, Y062, Ysec and Ymix) as the research objects, and the basic physical and chemical properties, net N mineralization and nitrification rate of soil of different clones were evaluated.ResultThe results showed that the net rates of N mineralization and nitrification were significantly affected by different clonal Chinese fir plantations. Specifically, the net mineralization rate and net nitrification rate were -0.09-0.118 mg·kg-1·d-1 and -0.021-0.051 mg·kg-1·d-1, respectively. During the whole incubation period, the average net soil N mineralization rate of Y061 was 0.117 mg kg-1 d-1, which was significantly higher than that of other clones and followed by Ymix (0.046 mg·kg-1·d-1) and Y062(0.033 mg·kg-1·d-1). In contrast, the average net N mineralization rates of the other four clones were negative, indicating the occurrence of net N immobilization. The average net soil nitrification rate of the Y008 clone was the highest, which was 0.051 mg kg-1 d-1, followed by Ymix (0.003 mg·kg-1·d-1) and Y020 clone (0.007 mg·kg-1·d-1). There were no significant differences in soil pH, ammonium nitrogen, C/N and the composition of silt and sand, but there were significant differences in soil nitrate nitrogen, organic matter, total nitrogen and clay composition. The results showed that ammonium nitrogen, nitrate nitrogen, pH and total nitrogen in soil were the main factors affecting the net nitrification rate and were all positively correlated, In contrast, the average net nitrification rate of the other four clones was negative, indicating the occurrence of net immobilization of nitrate. There were no significant differences in soil pH and carbon (C)/N among different clones, but significant differences in soil particle size composition, organic matter and total N content. Soil pH and total N were positively correlated with net mineralization and net nitrification rate, while soil C/N was negatively correlated with sand content.ConclusionThe results showed that the soil N supply capacity and N retention capacity of Y061 and Y062 clones were significantly higher than those of other clones, and the risk of N loss such as leaching in Y008 clones was higher than that of other clones. Therefore, the clone species should be rationally selected to ensure the soil fertility supply in actual planting. This study provides a theoretical basis for artificial nitrogen management and improved seed breeding of different clones of Chinese fir plantations.

    参考文献
    [1] Fang J, Weng Y N, Li B E, et al. Graphene oxide decreases the abundance of nitrogen cycling microbes and slows nitrogen transformation in soils[J]. Chemosphere, 2022, 309: 136642.
    [2] Li D J, Liu J, Chen H, et al. Soil gross nitrogen transformations in responses to land use conversion in a subtropical Karst region[J]. Journal of Environmental Management, 2018, 212: 1—7.
    [3] Xu J S, Su X, Jia Z P, et al. Effects of warming on soil nitrogen transformation rates, microbial biomass carbon and nitrogen and enzyme activity in crust-covered soil system[J]. Acta Pedologica Sinica, 2021, 58(3): 788—797. 徐军山, 苏雪, 贾志鹏, 等. 增温对结皮土壤系统氮转化速率及微生物生物量碳氮与酶活性的影响[J]. 土壤学报, 2021, 58(3): 788—797.
    [4] Elrys A S, Wang J, Metwally M A S, et al. Global gross nitrification rates are dominantly driven by soil carbon‐to‐nitrogen stoichiometry and total nitrogen[J]. Global Change Biology, 2021, 27(24): 6512—6524.
    [5] Hardo B, Jürgen A, Mats V, et al. Annual net nitrogen mineralization and litter flux in well-drained downy birch, Norway spruce and Scots pine forest ecosystems[J]. Silva Fennica, 2018, 52(4): 10013.
    [6] Elrys A S, Ali A, Zhang H M, et al. Patterns and drivers of global gross nitrogen mineralization in soils[J]. Global Change Biology, 2021, 27(22): 5950—5962.
    [7] Zhao W, Zhang J B, Müller C. Mechanisms behind the stimulation of nitrification by N input in subtropical acid forest soil[J]. Journal of Soils and Sediments, 2017, 17: 2338—2345.
    [8] Dan X Q, Meng L, He M Q, et al. Regulation of nitrogen acquisition in vegetables by different impacts on autotrophic and heterotrophic nitrification[J]. Plant and Soil, 2022, 474(1/2): 581—594.
    [9] Zhang J B, Cai Z C, Zhu T B, et al. Mechanisms for the retention of inorganic N in acidic forest soils of southern China[J]. Scientific Reports, 2013, 3: 2342.
    [10] Müller C, Laughlin R J, Spott O, et al. Quantification of N2O emission pathways via a 15N tracing model[J]. Soil Biology and Biochemistry, 2014, 72: 44—54.
    [11] Cheng Y, Zhang J B, Wang J, et al. Soil pH is a good predictor of dominating N2O production pathways under aerobic conditions[J]. Journal of Plant Nutrition and Soil Science, 2015, 178(3): 370—373.
    [12] State Forestry Administration. China forest resources report: Ninth national forest resources inventory[M]. Beijing: China Forestry Publishing House, 2019. 国家林业局. 中国森林资源报告: 第九次全国森林资源清查[M]. 北京: 中国林业出版社, 2019.
    [13] Selvalakshmi S, Vasu D, He Z J, et al. Soil nutrients dynamics in broadleaved forest and Chinese fir plantations in subtropical forests[J]. Journal of Tropical Forest Science, 2018, 30(2): 242—251.
    [14] Zhou J, Li Q R, Liu M, et al. Neighboring tree species alter uptake of \begin{document}$ {\text{NH}}_4^ + $\end{document} and NO3- by Chinese fir[J]. Trees, 2021, 35: 459—467.
    [15] Lu R K. Analytical methods for soil and agro-chemistry[M]. Beijing: China Agricultural Science and Technology Press, 2000. 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000.
    [16] Chmelíková L, Schmid H, Anke S, et al. Nitrogen-use efficiency of organic and conventional arable and dairy farming systems in Germany[J]. Nutrient Cycling in Agroecosystems, 2021, 119: 337—354.
    [17] Cheng Y, Elrys A S, Merwad A R M, et al. Global patterns and drivers of soil dissimilatory nitrate reduction to ammonium[J]. Environmental Science and Technology, 2022, 56(6): 3791—3800.
    [18] Ma H L, Wei C L, Li L, et al. Effects of glucose addition on soil nitrogen transformation and net mineralization and nitrification in Chinese fir plantation[J]. Forest Research, 2014, 27(3): 356—362. 马红亮, 魏春兰, 李磊, 等. 添加葡萄糖对杉木人工林土壤氮素转化及净矿化和硝化的影响[J]. 林业科学研究, 2014, 27(3): 356—362.
    [19] Xiao H Y, Liu B, Yu Z P, et al. Seasonal dynamics of soil mineral nitrogen pools and nitrogen mineralization rate in different forests in subtropical China[J]. Chinese Journal of Applied Ecology, 2017, 28(3): 730—738. 肖好燕, 刘宝, 余再鹏, 等. 亚热带不同林分土壤矿质氮库及氮矿化速率的季节动态[J]. 应用生态学报, 2017, 28(3): 730—738.
    [20] Chen R, Xiang W H, Xu X, et al. Speed of soil nitrogen mineralization and effect of fertilizer combined with warming on It in different ages Chinese fir plantation[J]. Hunan Agricultural Sciences, 2010(5): 125—129. 陈瑞, 项文化, 徐晓, 等. 不同年龄杉木林土壤氮矿化及其对施肥增温的响应[J]. 湖南农业科学, 2010(5): 125—129.
    [21] Zhang J B, Zhu T B, Cai Z C, et al. Nitrogen cycling in forest soils across climate gradients in Eastern China[J]. Plant and Soil, 2011, 342: 419—432.
    [22] Li P, Lang M, Wei W. Effects of nitrogen application amounts on net nitrogen transformation rates in forest and agricultural black soils[J]. Chinese Journal of Soil Science, 2020, 51(3): 694—701. 李平, 郎漫, 魏玮. 不同施氮量对林地和农田黑土净氮转化速率的影响[J]. 土壤通报, 2020, 51(3): 694—701.
    [23] Li H X, Hu F, Liu M Q, et al. Characteristics of nitrogen mineralization and nitrification in red soils[J]. Soils, 2000, 32(4): 194—197, 214. 李辉信, 胡锋, 刘满强, 等. 红壤氮素的矿化和硝化作用特征[J]. 土壤, 2000, 32(4): 194—197, 214.
    [24] Harrison-Kirk T, Beare M H, Meenken E D, et al. Soil organic matter and texture affect responses to dry/wet cycles: Changes in soil organic matter fractions and relationships with C and N mineralisation[J]. Soil Biology and Biochemistry, 2014, 74: 50—60.
    [25] Ding S J, Yang W L, Xin X L, et al. Effects of plough layer thickness on the transformation and fate of fertilizer nitrogen in fluvo-aquic soils with different textures[J]. Acta Pedologica Sinica, 2023, DOI: 10.11766/trxb202204060097. 丁世杰, 杨文亮, 信秀丽, 等. 耕层厚度对潮土中化肥氮素转化的影响[J]. 土壤学报, 2023, DOI: 10.11766/trxb202204060097.
    [26] Dang P F, Li C F, Huang T T, et al. Effects of different continuous fertilizer managements on soil total nitrogen stocks in China: A meta-analysis[J]. Pedosphere, 2022, 32(1): 39—48.
    [27] Zhu X M, Li R C, Lu J F, et al. Short-term effect of SO2 fumigation on soil net nitrogen transformation rates for Castanopsis carlesii and Cunninghamia lanceolata forests of northern Fujian, mid-subtropics of China[J]. Journal of Anhui Agricultural Sciences, 2013, 41(6): 2439—2441. 朱祥妹, 李任超, 陆建芳, 等. SO2对中亚热带两种森林土壤氮净转化速率的短期影响[J]. 安徽农业科学, 2013, 41(6): 2439—2441.
    [28] Zhang Y C, Zhang J B, Meng T Z, et al. Heterotrophic nitrification is the predominant NO3- production pathway in acid coniferous forest soil in subtropical China[J]. Biology and Fertility of Soils, 2013, 49(7): 955—957.
    [29] Zhang J B, Cheng Y, Cai Z C. The mechanisms of soil regulating nitrogen dynamics[J]. Advances in Earth Science, 2019, 34(1): 11—19. 张金波, 程谊, 蔡祖聪. 土壤调配氮素迁移转化的机理[J]. 地球科学进展, 2019, 34(1): 11—19.
    [30] Kou L, Guo D, Yang H, et al. Growth, morphological traits and mycorrhizal colonization of fine roots respond differently to nitrogen addition in a slash pine plantation in subtropical China[J]. Plant and Soil, 2015, 391(1): 207—218.
    [31] Qiu X, Hou J, Guo N, et al. Seasonal variations and influencing factors of gross nitrification rate in desert steppe soil[J]. Sustainability, 2022, 14(8): 4787.
    [32] Li P, Lang M. Effect of cultivation on gross and net N transformation rates in black soil relative to duration[J]. Acta Pedologica Sinica, 2020, 57(1): 165—173. 李平, 郎漫. 开垦年限对黑土氮初级转化速率和净转化速率的影响[J]. 土壤学报, 2020, 57(1): 165—173.
    [33] Zhao C, He X X, Dan X Q, et al. Soil dissolved organic matters mediate bacterial taxa to enhance nitrification rates under wheat cultivation[J]. Science of the Total Environment, 2022, 828: 154418.
    [34] Chen Z X, Tu X S, Meng H, et al. Microbial process-oriented understanding of stimulation of soil N2O emission following the input of organic materials[J]. Environmental Pollution, 2021, 284: 117176.
    [35] He J Z, Hu H W, Zhang L M. Current insights into the autotrophic thaumarchaeal ammonia oxidation in acidic soils[J]. Soil Biology and Biochemistry, 2012, 55: 146—154.
    [36] Zhang Y, Dai S Y, Huang X Q, et al. pH-induced changes in fungal abundance and composition affects soil heterotrophic nitrification after 30 days of artificial pH manipulation[J]. Geoderma, 2020, 366: 114255.
    [37] Steele K W, Saunders W M H. Soil nitrification activity and phosphorus uptake by ryegrass after nitrogen fertiliser application[J]. New Zealand Journal of Agricultural Research, 2011, 23(1): 83—84.
    [38] Zhang Q L, Liu Y, Ai G M, et al. The characteristics of a novel heterotrophic nitrification–aerobic denitrification bacterium, Bacillus methylotrophicus strain L7[J]. Bioresource Technology, 2012, 108: 35—44.
    [39] Zhang J B, Müller C, Zhu T B, et al. Heterotrophic nitrification is the predominant NO3- production mechanism in coniferous but not broad-leaf acid forest soil in subtropical China[J]. Biology and Fertility of Soils, 2011, 47: 533—542.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王敬,付瑞彪,郝兆东,郑仁华,叶代全,郑雪燕,陈金慧,程谊.不同无性系杉木人工林土壤氮素转化特征[J].土壤学报,2024,61(3):802-812. DOI:10.11766/trxb202210150568 WANG Jing, FU Ruibiao, HAO Zhaodong, ZHENG Renhua, YE Daiquan, ZHENG Xueyan, CHEN Jinhui, CHENG Yi. Characteristics of Soil Nitrogen Transformation in Different Clonal Chinese Fir Plantations[J]. Acta Pedologica Sinica,2024,61(3):802-812.

复制
分享
文章指标
  • 点击次数:150
  • 下载次数: 1176
  • HTML阅读次数: 616
  • 引用次数: 0
历史
  • 收稿日期:2022-10-15
  • 最后修改日期:2023-02-20
  • 录用日期:2023-03-27
  • 在线发布日期: 2023-03-28
  • 出版日期: 2024-05-15
文章二维码