绿肥介导的土壤代谢物-微生物变化缓解草莓自毒并增产提质
作者:
基金项目:

秦创原科技创新基金项目(2021ZDZX-NY-0005)、陕西省自然科学基金项目(2021JQ-151)、鄂尔多斯市科技重大专项(2022EEDSKJZDZX019)和内蒙古自治区科技计划项目(2022YFHH0114)资助


Green Manuring-induced Changes in Soil Metabolome and Microbiome Alleviate Strawberry Autotoxicity While Improving Fruit Yield and Quality
Author:
Fund Project:

the Qinchuangyuan Scientific and Technological Innovation Funds of China (No. 2021ZDZX-NY-0005), the Natural Science Foundation of Shaanxi Province, China (No. 2021JQ-151), the Science and Technology Major Project of Ordos (2022EEDSKJZDZX019), and the Science and Technology Planning Project of Inner Mongolia Autonomous Region (2022YFHH0114)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [37]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为探讨禾本科绿肥对设施大棚草莓产量和品质的影响及机制,于2017—2021年选取玉米、高粱和高丹草绿肥进行还田试验,设置休闲农田-草莓、玉米-草莓、高粱-草莓和高丹草-草莓4个处理,测定草莓盛果期的植株生长及生理指标、果实产量及品质、土壤化学特征、细菌群落结构及代谢组。结果表明,不同绿肥处理均促进后茬草莓生长、产量形成及品质提高。其中,玉米绿肥的效果最为明显,该处理下草莓植株干重、根表面积、根长、根平均直径、根尖数、根系活力和叶片叶绿素含量分别较休闲对照显著增加53.4%、34.4%、40.0%、21.0%、94.7%、36.0%和7.8%。同时,玉米绿肥处理下果实单株产量、总糖含量、维生素C含量和可溶性固形物含量分别显著增加44.6%、13.9%、14.4%和12.8%。此外,玉米绿肥处理下土壤pH、阳离子交换量、有机质含量、碱解氮含量、有效磷含量、速效钾含量、蔗糖酶活性、磷酸酶活性和脲酶活性均显著增加。绿肥介导了草莓根际土壤细菌群落多样性及丰富度增加,有益细菌如黄杆菌属(Flavobacterium)、贪噬菌属(Variovorax)和鞘氨醇杆菌属(Pedobacter)显著富集。绿肥对有益细菌的招募可能与之介导的土壤中糖类代谢物(如山梨糖、甘露糖和果糖)相对丰度显著增加有关,而脂类代谢物(如棕榈酸、硬脂酸和油酸)相对丰度的显著降低缓解了草莓自毒作用。因此,禾本科绿肥引起土壤特定代谢物变化通过招募有益菌并缓解自毒作用提高草莓产量和品质,以玉米为主的禾本科绿肥适用于设施大棚草莓生产。

    Abstract:

    ObjectiveGreen manuring is considered to be an effective strategy to achieve sustainable development in agriculture. It plays key roles in ameliorating soil fertility, improving fruit quality, and enhancing resource use efficiency. China is the world's largest strawberry (Fragaria×ananassa Duch.) producer, with strawberry cultivation taking place mainly in greenhouses. However, many field management practices, such as long-term monoculture and irrational chemical fertilization, reduce the fruit yield and quality of strawberries. Therefore, it is important to investigate the effects and mechanisms of green manuring on strawberry yield and quality in greenhouses.MethodThree gramineous green manures, i.e., maize (Zea mays L.), sorghum [Sorghum bicolor (L.) Moench], and sorghum-sudangrass (Sorghum×sudangrass), were selected to carry out a field experiment from 2017 to 2021. There were four treatments: fallow farmland-strawberry (control), maize-strawberry, sorghum-strawberry, and sorghum-sudangrass-strawberry. Samples were collected in the full fruit stage of strawberries to determine plant growth and physiological parameters, in addition to fruit yield and quality attributes. Rhizosphere soil chemical properties, bacterial community structure, and metabolome were also analyzed.ResultThe different green manure treatments promoted plant growth and yield formation, and improved the fruit quality of subsequent strawberry crops. The most prominent effects were observed for the corn green manure treatment, which increased strawberry plant dry weight, root growth, and leaf chlorophyll content (SPAD value) by 53.4%, 21.0% - 94.7%, and 7.8%, respectively, compared with the control treatment. Also, fruit yield per plant was markedly improved by 44.6% in the corn green manure treatment, along with the increase of nutrient contents (total sugar: by 13.9%; vitamin C: by 14.4%; and soluble solids: by 12.8%). Soil pH, cation exchange capacity, organic matter content, and nutrient availability (N, P and K) were also strongly increased under the corn green manure treatment, while sucrase, phosphatase, and urease activities were enhanced simultaneously. Green manuring mediated an increase in the diversity and abundance of rhizosphere soil bacterial communities, coupled with a distinct enrichment of potentially beneficial bacteria, such as Flavobacterium, Variovorax, and Pedobacter. The increase in the abundance of potentially beneficial bacteria might be related to a considerable increase in the relative abundance of carbohydrate metabolites (e.g., sorbose, mannose, and fructose) associated with green manuring. A remarkable decrease in the relative abundance of lipid metabolites (e.g., palmitic acid, stearic acid, and oleic acid) alleviated the autotoxicity of strawberries.ConclusionGramineous green manure-mediated shifts in specific metabolites in the rhizosphere soil improved strawberry yield and quality by recruiting potentially beneficial bacteria and alleviating allelopathic autotoxicity. Maize green manure is a better option compared to sorghum and sorghum-sudangrass green manures for greenhouse strawberry production.

    参考文献
    [1] Nowicka A, Kucharska A Z, Sokół-Łętowska A, et al. Comparison of polyphenol content and antioxidant capacity of strawberry fruit from 90 cultivars of Fragaria□×□ananassa Duch[J]. Food Chemistry, 2019, 270: 32—46.
    [2] Chen X Y, Dai D J, Zhao S F, et al. Genetic diversity of Colletotrichum spp. causing strawberry anthracnose in Zhejiang, China[J]. Plant Disease, 2020, 104(5): 1351—1357.
    [3] She S Y, Niu J J, Zhang C, et al. Significant relationship between soil bacterial community structure and incidence of bacterial wilt disease under continuous cropping system[J]. Archives of Microbiology, 2017, 199(2): 267—275.
    [4] Yu Y C, Yang J Y, Zeng S C, et al. Soil pH, organic matter, and nutrient content change with the continuous cropping of Cunninghamia lanceolata plantations in South China[J]. Journal of Soils and Sediments, 2017, 17(9): 2230—2238.
    [5] Lyu F J, Zhang Z H, Wang R Q, et al. Response of sesame root exudates at different growing stages to continuous cropping and its autotoxicity[J]. Chinese Journal of Oil Crop Sciences, 2021, 43(6): 1087—1098. 吕丰娟, 张志华, 汪瑞清, 等. 不同生育期芝麻根系分泌物对连作障碍的响应及其自毒作用[J]. 中国油料作物学报, 2021, 43(6): 1087—1098.
    [6] Zhao H M, Yang S Y, Guo H R, et al. Allelopathy of Artemisia annua on 4 receptor plants[J]. Acta Botanica Boreali-Occidentalia Sinica, 2007, 27(11): 2292—2297. 赵红梅, 杨顺义, 郭鸿儒, 等. 黄花蒿对4种受体植物的化感作用研究[J]. 西北植物学报, 2007, 27(11): 2292—2297.
    [7] Li W H, Liu Q Z. Changes in fungal community and diversity in strawberry rhizosphere soil after 12 years in the greenhouse[J]. Journal of Integrative Agriculture, 2019, 18(3): 677—687.
    [8] Li X Y, Lewis E E, Liu Q Z, et al. Effects of long-term continuous cropping on soil nematode community and soil condition associated with replant problem in strawberry habitat[J]. Scientific Reports, 2016, 6(1): 30466.
    [9] Cao W D, Bao X G, Xu C X, et al. Reviews and prospects on science and technology of green manure in China[J]. Journal of Plant Nutrition and Fertilizer, 2017, 23(6): 1450—1461. 曹卫东, 包兴国, 徐昌旭, 等. 中国绿肥科研60年回顾与未来展望[J]. 植物营养与肥料学报, 2017, 23(6): 1450—1461.
    [10] Zhou Y J. Effects of leguminous green manure inoculated with rhizobia on crop growth, weight loss and drug reduction in field in intercropping with tea trees and strawberry rotation[D]. Nanjing: Nanjing Agricultural University, 2020. 周雨佳. 豆科绿肥接种根瘤菌在与茶树间作、草莓轮作中对作物生长及田间减肥减药效果的研究[D]. 南京: 南京农业大学, 2020.
    [11] Wang P P, Chang C L, Yang X Y, et al. Effects of phosphorus contortion and application of chemical fertilizer on soil enzyme activities in flue-cured tobacco[J]. Acta Agriculturae Boreali-Sinica, 2018, 33(S1): 222—229. 王盼盼, 常春丽, 杨新宇, 等. 草木犀翻压配施化肥对烤烟土壤酶活性的影响[J]. 华北农学报, 2018, 33(S1): 222—229.
    [12] Gao S J, Zhou G P, Cao W D. Impacts of plantation of winter green manure crops on soil nitrification in paddy soil[J]. Acta Pedologica Sinica, 2022, 59(1): 263—273. 高嵩涓, 周国朋, 曹卫东. 冬种绿肥对水稻土硝化作用的影响[J]. 土壤学报, 2022, 59(1): 263—273.
    [13] Jin Y Q, Zhu H F, Luo S, et al. Role of maize root exudates in promotion of colonization of Bacillus velezensis strain S3-1 in rhizosphere soil and root tissue[J]. Current Microbiology, 2019, 76(7): 855—862.
    [14] Ordal G W, Villani D P, Rosendahl M S. Chemotaxis towards sugars by Bacillus subtilis[J]. Journal of General Microbiology, 1979, 115(1): 167—172.
    [15] Yuan Y Y, Xian H Q, Hong Y C, et al. Identification of peanut root exudates and the analysis of its allelopathy effect[J]. Journal of Peanut Science, 2011, 40(3): 24—29. 袁云云, 咸洪泉, 洪永聪, 等. 花生根系分泌物的鉴定及其化感效应分析[J]. 花生学报, 2011, 40(3): 24—29.
    [16] Cheng F, Cheng Z H. Research progress on the use of plant allelopathy in agriculture and the physiological and ecological mechanisms of allelopathy[J]. Frontiers in Plant Science, 2015, 6: 1020.
    [17] Gao J F. Experimental guidance for plant physiology[M]. Beijing: Higher Education Press, 2006. 高俊凤. 植物生理学实验指导[M]. 北京: 高等教育出版社, 2006.
    [18] Cao S C. Vegetables[M]. Hefei: Anhui Science and Technology Publishing House, 1987. 曹寿椿. 蔬菜[M]. 合肥: 安徽科学技术出版社, 1987.
    [19] Bao S D. Soil and agricultural chemistry analysis[M]. 3rd ed. Beijing: China Agriculture Press, 2000. 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000.
    [20] Guan S Y. Soil enzyme and its research methods[M]. Beijing: Agriculture Press, 1986. 关松荫. 土壤酶及其研究法[M]. 北京: 农业出版社, 1986.
    [21] Yu P, He X M, Baer M, et al. Plant flavones enrich rhizosphere Oxalobacteraceae to improve maize performance under nitrogen deprivation[J]. Nature Plants, 2021, 7(4): 481—499.
    [22] Zhao N, Zhao H B, Yu C W, et al. Effect of green manure in summer fallow period and nitrogen rate on winter wheat growth[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2010, 19(12): 41—47. 赵娜, 赵护兵, 鱼昌为, 等. 夏闲期种植翻压绿肥和施氮量对冬小麦生长的影响[J]. 西北农业学报, 2010, 19(12): 41—47.
    [23] Zhang S H, Wang J, Ghimire R, et al. Effect of green manure on soil water and crop yield in the Loess Plateau of China: A Meta-analysis[J]. Chinese Journal of Eco-Agriculture, 2021, 29(11): 1879—1892. 张少宏, 王俊, Ghimire R, 等. 黄土高原绿肥填闲种植的水分与产量效应: Meta分析[J]. 中国生态农业学报, 2021, 29(11): 1879—1892.
    [24] Zhang D B, Yao P W, Li J, et al. Effects of two years' incorporation of leguminous green manure on soil properties of a wheat field in dryland conditions[J]. Acta Ecologica Sinica, 2013, 33(7): 2272—2281. 张达斌, 姚鹏伟, 李婧, 等. 豆科绿肥及施氮量对旱地麦田土壤主要肥力性状的影响[J]. 生态学报, 2013, 33(7): 2272—2281.
    [25] Zhang C, Zhu S R, Tian F, et al. Effects of different green manure on bacterial community structure and diversity in tobacco-planting field in Xiangxi[J]. Guizhou Agricultural Sciences, 2016, 44(5): 43—46. 张超, 朱三荣, 田峰, 等. 不同绿肥对湘西烟田土壤细菌群落结构与多样性的影响[J]. 贵州农业科学, 2016, 44(5): 43—46.
    [26] Wang Z, Liang Y, Yao P W, et al. Effects of fertilization before sowing of leguminous green manure and its incorporation methods on soil moisture and nutrient regime of wheat field in Weibei Dryland[J]. Agricultural Research in the Arid Areas, 2014, 32(3): 119—126. 王峥, 梁颖, 姚鹏伟, 等. 绿肥播前施肥和翻压方式对旱地麦田土壤水肥性状的影响[J]. 干旱地区农业研究, 2014, 32(3): 119—126.
    [27] Chen Q Q, Wang J P, Zhang H F, et al. Microbial community and function in nitrogen transformation of ectopic fermentation bed system for pig manure composting[J]. Bioresource Technology, 2021, 319: 124155.
    [28] Yin C T, Casa Vargas J M, Schlatter D C, et al. Rhizosphere community selection reveals bacteria associated with reduced root disease[J]. Microbiome, 2021, 9(1): 86.
    [29] Montalbán B, Croes S, Weyens N, et al. Characterization of bacterial communities associated with Brassica napus L. growing on a Zn-contaminated soil and their effects on root growth[J]. International Journal of Phytoremediation, 2016, 18(10): 985—993.
    [30] Natsagdorj O, Sakamoto H, Santiago D M O, et al. Variovorax sp. has an optimum cell density to fully function as a plant growth promoter[J]. Microorganisms, 2019, 7(3): 82.
    [31] Liu X W, Guo H C. Effects of potato and maize compound planting on soil allelochemicals and soil bacterial community structure[J]. Chinese Journal of Eco-Agriculture, 2020, 28(6): 794—802. 刘贤文, 郭华春. 马铃薯与玉米复合种植对土壤化感物质及土壤细菌群落结构的影响[J]. 中国生态农业学报, 2020, 28(6): 794—802.
    [32] Hsieh C C, Hsiao K C, Yu T J. Significance of green manures in improving soil fertility in central China[J]. Acta Pedologica Sinica, 1961, 9(3/4): 117—128. 谢建昌, 肖克谦, 于天仁. 华中地区主要绿肥在提高土壤肥力上的作用[J]. 土壤学报, 1961, 9(3/4): 117—128.
    [33] Zhao Q, Zhang X J, Ning X G. Study on green manure crops nutrient accumulation and effect on soil nutrients before returning in North China[J]. Soil and Fertilizer Sciences in China, 2022(5): 61—67. 赵秋, 张新建, 宁晓光. 华北冬绿肥作物养分累积特征及对翻压前土壤养分的影响[J]. 中国土壤与肥料, 2022(5): 61—67.
    [34] Dai X L, Zhou W, Liu G R, et al. Soil C/N and pH together as a comprehensive indicator for evaluating the effects of organic substitution management in subtropical paddy fields after application of high-quality amendments[J]. Geoderma, 2019, 337: 1116—1125.
    [35] Jiang Y, Yi X T, Liu M Y, et al. Dynamic responses of soil enzymes at key growth stages in rice after the in situ remediation of paddy soil contaminated with cadmium and arsenic[J]. Science of the Total Environment, 2022, 830: 154633.
    [36] Suh J, Noh H. Impact of amendments on microbial biomass, enzyme activity and bacterial diversity of soils in long-term rice field experiment[J]. Korean Journal of Soil Science and Fertilizer, 2009, 42(4): 257—265.
    [37] Wang X Y, Zhang M, Liu Y J, et al. Effects of soil amelioration material mix on pH of acid soils, growth and material accumulation of flue-cured tobacco[J]. Journal of Nuclear Agricultural Sciences, 2021, 35(11): 2626—2633. 王新月, 张敏, 刘勇军, 等. 改土物料混用对酸性土壤pH和烤烟生长及物质积累的影响[J]. 核农学报, 2021, 35(11): 2626—2633.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

郭俏,肖莉,李进,孙晨瑜,符慧晶,舒小龙,薛泉宏,来航线.绿肥介导的土壤代谢物-微生物变化缓解草莓自毒并增产提质[J].土壤学报,2024,61(3):836-847. DOI:10.11766/trxb202211050608 GUO Qiao, XIAO Li, LI Jin, SUN Chenyu, FU Huijing, SHU Xiaolong, XUE Quanhong, LAI Hangxian. Green Manuring-induced Changes in Soil Metabolome and Microbiome Alleviate Strawberry Autotoxicity While Improving Fruit Yield and Quality[J]. Acta Pedologica Sinica,2024,61(3):836-847.

复制
分享
文章指标
  • 点击次数:381
  • 下载次数: 1569
  • HTML阅读次数: 926
  • 引用次数: 0
历史
  • 收稿日期:2022-11-05
  • 最后修改日期:2023-02-13
  • 录用日期:2023-04-18
  • 在线发布日期: 2023-04-23
  • 出版日期: 2024-05-15
文章二维码