典型黑土的黑度与土壤有机质组分关系研究
作者:
中图分类号:

S714.5

基金项目:

国家重点研发计划项目(2021YFD1500400、2022YFD1500100) 、中国科学院战略性先导科技专项(A 类) (XDA28070100)和财政部和农业农村部国家现代农业产业技术体系(CARS-04)共同资助


Study on the Relationship Between Blackness and Soil Organic Matter Fractions of Typical Mollisol
Author:
Fund Project:

National Key R & D Program of China (Nos.2021YFD1500400, 2022YFD1500100), the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDA28070100), and the China Agriculture Research System of MOF and MARA (No. CARS-04)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [23]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    土壤颜色作为土壤的一项重要物理指标,被广泛应用于土壤诊断、分类以及土壤性质判断。在矿物成分大致相同条件下,土壤有机质(SOM)是控制土壤变黑的重要因素。采用基于CIE L*a*b*颜色分析系统的分光测色仪,并结合土壤物理分组方法,对30个典型黑土及其物理组分(轻组、粗颗粒、细颗粒和矿质结合态有机质)的黑度进行了分析,旨在明确黑土SOM含量与其黑度间的定量关系,揭示不同物理组分对土壤黑度的贡献。结果表明:黑土的黑度与SOM、以及各物理组分的黑度与相应组分的有机碳含量之间,均呈显著正相关关系。而且随着组分稳定程度的增加,这种相关性逐渐增强。从不同组分看,轻组和粗颗粒组分的黑度值大于细颗粒和矿质结合态组分,但相关分析表明,轻组和粗颗粒组分的黑度与原土黑度无显著相关关系,二者对土壤黑度的贡献率仅为2.6%。而矿质结合态组分作为土壤腐殖质的主要储存位置,其对土壤的黑度贡献率达81%以上,是黑土呈现黑色的决定性因素。

    Abstract:

    【Objective】Soil color is an important soil property. It is frequently used by soil scientists for the identification and classification of soil. It is also used as an indicator of many soil properties. Soil organic matter(SOM)is the most important pigment, that colors the soil in black color.【Method】In this study, a total of 30 mollisol samples were collected from the typical black soil region of northeast China. The SOM was physically separated into four fractions: light fraction, coarse particle fraction, fine particle fraction, and mineral‐associated fraction. Based on the CIE L*a*b* color analysis system, the darkness of bulk soil and soil physical fractions were analyzed using a spectro-colorimeter. The objective was to quantify the relationships between SOM content and the color of black soil and to reveal the contribution of different physical fractions to soil blackness.【Result】Bulk soil blackness was strongly positively correlated with the SOM content. Similarly, significant relationships were observed between the blackness of physical fractions and the organic carbon content in corresponding fractions. This relationship was gradually strengthened with the increase in the stability of the fractions. As for the color of soil physical fractions, the blackness value of light and coarse particle fractions was greater than that of fine particle and mineral‐associated fractions. Also, correlation analysis showed that there was no significant relationship between the blackness of light or coarse particle fractions and the bulk soil blackness, and the contribution rate of the two fractions to bulk soil blackness was only 2.6%.【Conclusion】The the mineral‐associated fractions, as the main storage location of soil humus, contributed more than 81% to bulk soil blackness and plays a decisive role in coloring the soil black.

    参考文献
    [1] Turk J K,Young R A. Field conditions and the accuracy of visually determined Munsell soil color[J]. Soil Science Society of America Journal,2020,84(1):163-169.
    [2] Yan Z M,Yuan D G,Yu X X,et al. Quantitative relationship of colorimetric parameters with forms of iron and manganese and organic matter in purplish soil[J]. Acta Pedologica Sinica,2021,58(2):372-380. [晏昭敏,袁大刚,余星兴,等. 紫色土色度参数与铁锰形态及有机质的定量关系研究[J]. 土壤学报,2021,58(2):372-380.]
    [3] Yue Z H,Huang Q,Xiao L,et al. Quantitative conversion of soil color from CIELAB to Munsell system[J]. Spectroscopy and Spectral Analysis,2019,39(9):2842-2846. [岳智慧,黄强,肖理,等. 土壤颜色由CIE向Munsell系统的定量转换[J]. 光谱学与光谱分析,2019,39(9):2842-2846.]
    [4] Vodyanitskii Y N,Savichev A T. The influence of organic matter on soil color using the regression equations of optical parameters in the system CIE-L*a*b*[J]. Annals of Agrarian Science,2017,15(3):380-385.
    [5] Baumann K,Schöning I,Schrumpf M,et al. Rapid assessment of soil organic matter:Soil color analysis and Fourier transform infrared spectroscopy[J]. Geoderma,2016,278:49-57.
    [6] Ramos P V,Inda A V,Barrón V,et al. Color in subtropical Brazilian soils as determined with a Munsell chart and by diffuse reflectance spectroscopy[J]. Catena,2020,193:104609.
    [7] Simon T,Zhang Y K,Hartemink A E,et al. Predicting the color of sandy soils from Wisconsin,USA[J]. Geoderma,2020,361:114039.
    [8] Viscarra Rossel R A,Minasny B,Roudier P,et al. Colour space models for soil science[J]. Geoderma,2006,133(3/4):320-337.
    [9] Lavallee J M,Soong J L,Cotrufo M F. Conceptualizing soil organic matter into particulate and mineral- associated forms to address global change in the 21st century[J]. Global Change Biology,2020,26(1):261-273.
    [10] Guo C S,Ma D H,Zhang C Z,et al. Extraction method and composition of black matter in typical Shajiang Calci-Aquic Vertisols in China[J]. Acta Pedologica Sinica,2021,58(2):421-432. [郭成士,马东豪,张丛志,等. 典型砂姜黑土黑色物质提取方法及成分研究[J]. 土壤学报,2021,58(2):421-432.]
    [11] Janzen H H,Campbell C A,Brandt S A,et al. Light-fraction organic matter in soils from long-term crop rotations[J]. Soil Science Society of America Journal,1992,56(6):1799-1806.
    [12] Cambardella C A,Elliott E T. Particulate soil organic-matter changes across a grassland cultivation sequence[J]. Soil Science Society of America Journal,1992,56(3):777-783.
    [13] Moritsuka N,Matsuoka K,Katsura K,et al. Soil color analysis for statistically estimating total carbon,total nitrogen and active iron contents in Japanese agricultural soils[J]. Soil Science and Plant Nutrition,2014,60(4):475-485.
    [14] Ibáñez-Asensio S,Marqués-Mateu A,Moreno-Ramón H,et al. Statistical relationships between soil colour and soil attributes in semiarid areas[J]. Biosystems Engineering,2013,116(2):120-129.
    [15] Liles G C,Beaudette D E,O'Geen A T,et al. Developing predictive soil C models for soils using quantitative color measurements[J]. Soil Science Society of America Journal,2013,77(6):2173-2181.
    [16] Galvão L S,Pizarro M A,Epiphanio J C N. Variations in reflectance of tropical soils:Spectral-chemical composition relationships from AVIRIS data [J]. Remote Sensing of Environment,2001,75(2):245-255.
    [17] Swetha R K,Chakraborty S. Combination of soil texture with Nix color sensor can improve soil organic carbon prediction[J]. Geoderma,2021,382:114775.
    [18] Sánchez-Marañón M,Ortega R,Miralles I,et al. Estimating the mass wetness of Spanish arid soils from lightness measurements[J]. Geoderma,2007,141(3/4):397-406.
    [19] Hill I,Park D,Bridges W,et al. Soil water content and photosynthetically active radiation influences soil color assessment[J]. Geoderma Regional,2022,31:e00581.
    [20] Llorente M,Glaser B,Turrión M B. Storage of organic carbon and black carbon in density fractions of calcareous soils under different land uses[J]. Geoderma,2010,159(1/2):31-38.
    [21] von Lützow M,Kögel-Knabner I,Ekschmitt K,et al. SOM fractionation methods:Relevance to functional pools and to stabilization mechanisms[J]. Soil Biology & Biochemistry,2007,39(9):2183-2207.
    [22] Yao S H,Zhang Y L,Han Y,et al. Labile and recalcitrant components of organic matter of a Mollisol changed with land use and plant litter management:An advanced 13C NMR study[J]. Science of the Total Environment,2019,660:1-10.
    [23] Spielvogel S,Knicker H,Kögel-Knabner I. Soil organic matter composition and soil lightness[J]. Journal of Plant Nutrition and Soil Science,2004,167(5):545-555.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

郝翔翔,王翠,邹文秀,严君,韩晓增.典型黑土的黑度与土壤有机质组分关系研究[J].土壤学报,2023,60(5):1421-1429. DOI:10.11766/trxb202211160624 HAO Xiangxiang, WANG Cui, ZOU Wenxiu, YAN Jun, HAN Xiaozeng. Study on the Relationship Between Blackness and Soil Organic Matter Fractions of Typical Mollisol[J]. Acta Pedologica Sinica,2023,60(5):1421-1429.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-11-16
  • 最后修改日期:2023-01-15
  • 录用日期:2023-03-27
  • 在线发布日期: 2023-04-06
  • 出版日期: 2023-09-28
文章二维码