不同成土模式下黑土有机质热稳定性剖面分异特征
作者:
基金项目:

国家自然科学基金项目(42130715)资助


Vertical Variations of Thermal Stability of Soil Organic Matter in Black Soils under Different Pedogenetic Modes
Author:
Fund Project:

Supported by the National Natural Science Foundation of China(No. 42130715)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [50]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    土壤有机质(soil organic matter,SOM)含量及其稳定性是评价土壤质量的重要指标,热重分析法在反映SOM含量与热稳定性方面显示出了较好的潜力而受到重视。探究不同成土模式下黑土SOM热稳定性在剖面尺度的分异规律及影响因素,可以为黑土资源保护与碳固定提供理论参考。本研究在东北典型黑土区采集了相对稳定地形条件下(平坦)自然发育的3个典型黑土剖面和非稳定地形条件下(有地表侵蚀和沉积)受侵蚀堆积过程影响的2个黑土剖面,采用热重分析法,基于不同温度区间的质量损失,分别以Exo1(200~350℃区间的质量损失)和Exo2(350~550℃区间质量损失)代表热易分解SOM和热稳定SOM,以微分热重曲线及热重参数指标(Exo1/Exo2和TG-T50)表征不同土壤剖面的SOM热稳定性分异特征,并结合傅里叶红外光谱讨论了SOM化学稳定性剖面分异特征。结果表明:稳定地形下自然发育的黑土,热易分解SOM(Exo1)含量相较于热稳定SOM(Exo2)含量随深度下降更快,Exo1/Exo2随深度减小,TG-T50随深度增加,脂肪族碳/芳香族碳减少,SOM稳定性随深度增加。非稳定地形条件下,黑土SOM热稳定性并未随深度表现出规律性下降趋势,存在深层SOM含量和Exo1/Exo2高于表层的现象,这主要是由于复杂的地表历史过程导致母质和SOM来源不同。本研究证实了热重分析法在反映SOM稳定性方面的适用性。黑土中SOM稳定性的剖面变化在很大程度上受成土模式的制约,而成土模式与地貌稳定性密切相关。侵蚀过程携带的大量热易分解SOM在坡面下部及流域沉积地形部位堆积,由于埋藏作用,这些热易分解SOM可以长期存在于深层土壤中。然而,非稳定地形区域一旦再遭侵蚀,这些埋藏的不稳定SOM很可能再次启动分解过程,同样可以导致大量埋藏的“老碳”被释放,成为黑土区碳排放的“热点”。

    Abstract:

    ObjectiveSoil organic matter(SOM) content and its stability are important indexes to evaluate soil quality. Thermogravimetric analysis has gained attention due to its good performance in reflecting SOM content and SOM stability. The objective of this paper is to explore the vertical variation patterns of SOM thermal stability in black soils under different pedogenetic modes. The causes for these variations are also explored. This study will provide a theoretical reference for the protection of black soil resources and carbon sequestration.MethodBlack soils of two major pedogenetic modes, i.e., naturally developed mode and depositional mode were selected for comparison. The former one included three typical black soils under stable topographic conditions (flat terrain) and the latter one included two black soils affected by erosional-depositional processes under unstable topographic conditions (with surface erosion and sedimentation) in the typical black soil area of Northeast China. Thermogravimetric analysis was used as a tool to evaluate SOM thermal stability. Two SOM fractions were recognized based on mass loss in responding to different temperature intervals, with Exo1(mass loss during 200~350℃) representing thermally labile SOM and Exo2 (mass loss during 350~550℃) representing thermally stable SOM. In addition, derivative thermogravimetry curves and two thermogravimetric parameters including Exo1/Exo2 and TG-50 were adopted to characterize the variations of SOM thermal stability in different soil profiles. Fourier transform infrared spectroscopy was used to assess SOM chemical stability.ResultFor naturally developed black soils from the stable land surface, the content of thermally labile SOM (Exo1) decreased at a higher rate with depth than that of thermally stable SOM (Exo2). With the increase of depth, Exo1/Exo2 decreased, TG-T50 increased, and aliphatic C/aromatic C decreased, indicating that the SOM of naturally developed black soils tended to be thermally stable with depth. Under unstable geomorphic settings, on the contrary, the thermal stability of SOM did not show a regular decrease trend with depth, and the content of SOM and Exo1/Exo2 in deeper layers could be higher than those in the surface layer. This was mainly due to the different land surface histories that caused variations in sources of soil parent material and SOM.ConclusionThis study confirmed the usefulness of thermogravimetric analysis in reflecting SOM stability. Spatial variations in SOM stability in black soils were largely conditioned by a pedogenetic mode which was largely related to geomorphic stability. We found that depositional landscape positions tended to stack a large amount of labile SOM, which was carried by erosional processes. This occurs both at hillslope and watershed scales. These thermally unstable SOMs could be preserved in the deep soil for a long time, due to the blocking effect of burial. Once eroded, however, these blocked labile SOMs are easily decomposed, which may also lead to the release of a large amount of buried 'old carbon' and become the 'hot spot' of carbon emissions in the black soil area.

    参考文献
    [1] Zhang X Y, Liu X B. Key issues of mollisols research and soil erosion control strategies in China[J]. Bulletin of Soil and Water Conservation, 2020, 40(4): 340—344. 张兴义, 刘晓冰. 中国黑土研究的热点问题及水土流失防治对策[J]. 水土保持通报, 2020, 40(4): 340—344.
    [2] Liu B Y, Yan B X, Shen B, et al. Current status and comprehensive control strategies of soil erosion for cultivated land in the Northeastern black soil area of China[J]. Science of Soil and Water Conservation, 2008, 6(1): 1—8. 刘宝元, 阎百兴, 沈波, 等. 东北黑土区农地水土流失现状与综合治理对策[J]. 中国水土保持科学, 2008, 6(1): 1—8.
    [3] Zhao Y C, Wang M Y, Hu S J, et al. Economics- and policy-driven organic carbon input enhancement dominates soil organic carbon accumulation in Chinese croplands[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(16): 4045—4050.
    [4] Liu B Y, Zhang G L, Xie Y, et al. Delineating the black soil region and typical black soil region of northeastern China[J]. Chinese Science Bulletin, 2021, 66(1): 96—106. 刘宝元, 张甘霖, 谢云, 等. 东北黑土区和东北典型黑土区的范围与划界[J]. 科学通报, 2021, 66(1): 96—106.
    [5] Chinese Academy of Sciences. Report on protection and utilization of black land in northest China[R]. Beijing: Chinese Academy of Sciences, 2022. 中国科学院. 东北黑土地保护与利用报告(2021年)[R]. 北京: 中国科学院, 2022.
    [6] Liu K, Wei M H, Dai H M, et al. Spatiotemporal variation of black soil layer thickness in black soil region of northeast China[J]. Geology and Resources, 2022, 31(3): 434—442, 394. 刘凯, 魏明辉, 戴慧敏, 等. 东北黑土区黑土层厚度的时空变化[J]. 地质与资源, 2022, 31(3): 434—442, 394.
    [7] Cui J Y, Guo L C, Chen Y L, et al. Spatial distribution of 14c age and depth of mollisol sections in the Songnen Plain during the Holocene[J]. Quaternary Sciences, 2021, 41(5): 1332—1341. 崔静怡, 郭利成, 陈雨露, 等. 松嫩平原全新世黑土14C年龄-深度关系空间格局[J]. 第四纪研究, 2021, 41(5): 1332—1341.
    [8] Wu C W, Xia J X, Duan Z R. Review on detection methods of soil organic matter(SOM)[J]. Soils, 2015, 47(3): 453—460. 吴才武, 夏建新, 段峥嵘. 土壤有机质测定方法述评与展望[J]. 土壤, 2015, 47(3): 453—460.
    [9] Dungait J A J, Hopkins D W, Gregory A S, et al. Soil organic matter turnover is governed by accessibility not recalcitrance[J]. Global Change Biology, 2012, 18(6): 1781—1796.
    [10] Cheng P, Burr G S, Zhou W J, et al. The deficiency of organic matter 14C dating in Chinese Loess-paleosol sample[J]. Quaternary Geochronology, 2020, 56: 101051.
    [11] Stoner S W, Schrumpf M, Hoyt A M, et al. How well does ramped thermal oxidation quantify the age distribution of soil carbon? Assessing thermal stability of physically and chemically fractionated soil organic matter. EGUsphere discussion, 2022. https://doi.org/10.5194/egusphere-2022-624.
    [12] Siewert C. Rapid screening of soil properties using thermogravimetry[J]. Soil Science Society of America Journal, 2004, 68(5): 1656—1661.
    [13] Plante A F, Fernández J M, Leifeld J. Application of thermal analysis techniques in soil science[J]. Geoderma, 2009, 153(1/2): 1—10.
    [14] Fernández J M, Plante A F, Leifeld J, et al. Methodological considerations for using thermal analysis in the characterization of soil organic matter[J]. Journal of Thermal Analysis and Calorimetry, 2011, 104(1): 389—398.
    [15] Zhu Y, Li A M, Li C, et al. Chracteristics of soil humic substances by infrared spectra and thermal gravity[J]. Environmental Chemistry, 2005, 24(3): 288—292. 朱燕, 李爱民, 李超, 等. 土壤有机质级份的红外和热重特性[J]. 环境化学, 2005, 24(3): 288—292.
    [16] Schulten H R, Leinweber P. Thermal stability and composition of mineral-bound organic matter in density fractions of soil[J]. European Journal of Soil Science, 1999, 50(2): 237—248.
    [17] Wang X D, Hu T T, Zhang Y P. Property and structure of differently combined humic acids[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 1998, 7(1): 75—78. 王旭东, 胡田田, 张一平. 不同结合态胡敏酸的性质、结构研究[J]. 西北农业学报, 1998, 7(1): 75—78.
    [18] Gaál F, Szöllősy I, Arnold M, et al. Determination of the organic matter, metal carbonate and mobile water in soils simultaneous TG, DTG, DTA and EGA techniques[J]. Journal of Thermal Analysis, 1994, 42(5): 1007—1016.
    [19] Leinweber P, Schulten H R. Differential thermal analysis, thermogravimetry and in-source pyrolysis-mass spectrometry studies on the formation of soil organic matter[J]. Thermochimica Acta, 1992, 200: 151—167.
    [20] Kleber M, Sollins P, Sutton R. A conceptual model of organo-mineral interactions in soils: Self-assembly of organic molecular fragments into zonal structures on mineral surfaces[J]. Biogeochemistry, 2007, 85(1): 9—24.
    [21] Schmidt M W I, Torn M S, Abiven S, et al. Persistence of soil organic matter as an ecosystem property[J]. Nature, 2011, 478(7367): 49—56.
    [22] Kaiser K, Guggenberger G. Mineral surfaces and soil organic matter[J]. European Journal of Soil Science, 2003, 54(2): 219—236.
    [23] Wiseman C L S, Püttmann W. Interactions between mineral phases in the preservation of soil organic matter[J]. Geoderma, 2006, 134(1/2): 109—118.
    [24] Schrumpf M, Kaiser K, Guggenberger G, et al. Storage and stability of organic carbon in soils as related to depth, occlusion within aggregates, and attachment to minerals[J]. Biogeosciences, 2013, 10(3): 1675—1691.
    [25] Zhang G L, Gong Z T. Soil survey laboratory methods[M]. Beijing: Science Press, 2012. 张甘霖, 龚子同. 土壤调查实验室分析方法[M]. 北京: 科学出版社, 2012.
    [26] Zhao L H, Liu X F, Wang Y J, et al. Thermal analysis determining soil organic matter content and thermal stability[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(10): 105—114. 赵龙华, 刘小粉, 王雅婧, 等. 基于热分析技术的土壤有机质含量和稳定性分析[J]. 农业工程学报, 2016, 32(10): 105—114.
    [27] Tivet F, de Moraes Sá J C, Lal R, et al. Assessing humification and organic C compounds by laser-induced fluorescence and FTIR spectroscopies under conventional and no-till management in Brazilian Oxisols[J]. Geoderma, 2013, 207/208: 71—81.
    [28] Sheng M, Long J H, Lei W Y, et al. Effect of straw returning on the characteristics of Fourier Infrared Spectroscopy organic carbon within aggregates in a Mollisols[J]. Soils and Crops, 2020, 9(4): 355—366. 盛明, 龙静泓, 雷琬莹, 等. 秸秆还田对黑土团聚体内有机碳红外光谱特征的影响[J]. 土壤与作物, 2020, 9(4): 355—366.
    [29] Li N, Sheng M, You M Y, et al. Advancement in research on application of 13C NMR techniques to exploration of chemical structure of soil organic matter[J]. Acta Pedologica Sinica, 2019, 56(4): 796—812. 李娜, 盛明, 尤孟阳, 等. 应用13C核磁共振技术研究土壤有机质化学结构进展[J]. 土壤学报, 2019, 56(4): 796—812.
    [30] Tokarski D, Wiesmeier M, Doležalová Weissmannová H, et al. Linking thermogravimetric data with soil organic carbon fractions[J]. Geoderma, 2020, 362: 114124.
    [31] Leifeld J, Franko U, Schulz E. Thermal stability responses of soil organic matter to long-term fertilization practices[J]. Biogeosciences, 2006, 3(3): 371—374.
    [32] Dou S. Soil organic matter[M]. Beijing: Science Press, 2010. 窦森. 土壤有机质[M]. 北京: 科学出版社, 2010.
    [33] Santisteban J I, Mediavilla R, López-Pamo E, et al. Loss on ignition: A qualitative or quantitative method for organic matter and carbonate mineral content in sediments?[J]. Journal of Paleolimnology, 2004, 32(3): 287—299.
    [34] Dean W E Jr. Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition: Comparison with other methods[J]. Journal of Sedimentary Research, 1974, 44(1): 242—248.
    [35] Schnitzer M, Hoffman I. A thermogravimetric approach to the classification of organic soils[J]. Soil Science Society of America Journal, 1966, 30(1): 63—66.
    [36] Schnitzer M, Hoffman I. Thermogravimetry of soil humic compounds[J]. Geochimica et Cosmochimica Acta, 1965, 29(8): 859—870.
    [37] Barros N, Salgado J, Villanueva M, et al. Application of DSC–TG and NMR to study the soil organic matter[J]. Journal of Thermal Analysis and Calorimetry, 2011, 104(1): 53—60.
    [38] Ranalli G, Bottura G, Taddei P, et al. Composting of solid and sludge residues from agricultural and food industries. Bioindicators of monitoring and compost maturity[J]. Journal of Environmental Science and Health Part A, Toxic/Hazardous Substances & Environmental Engineering, 2001, 36(4): 415—436.
    [39] Dell'Abate M T, Benedetti A, Trinchera A, et al. Humic substances along the profile of two Typic Haploxerert[J]. Geoderma, 2002, 107(3/4): 281—296.
    [40] Strezov V, Moghtaderi B, Lucas J A. Computational calorimetric investigation of the reactions during thermal conversion of wood biomass[J]. Biomass and Bioenergy, 2004, 27(5): 459—465.
    [41] Hao X X, Zou W X, Han X Z. Impact of long-term land-use patterns on chemical composition of soil organic matter in mollisol profile[J]. Acta Pedologica Sinica, 2022, 59(5): 1228—1237. 郝翔翔, 邹文秀, 韩晓增. 长期不同利用方式对黑土剖面中有机质化学组成的影响[J]. 土壤学报, 2022, 59(5): 1228—1237.
    [42] Hemingway J D, Rothman D H, Grant K E, et al. Mineral protection regulates long-term global preservation of natural organic carbon[J]. Nature, 2019, 570(7760): 228—231.
    [43] Zhang W J, Wang X J, Xu M G, et al. Soil organic carbon dynamics under long-term fertilizations in arable land of Northern China[J]. Biogeosciences, 2010, 7(2): 409—425.
    [44] Eusterhues K, Rumpel C, Kleber M, et al. Stabilisation of soil organic matter by interactions with minerals as revealed by mineral dissolution and oxidative degradation[J]. Organic Geochemistry, 2003, 34(12): 1591—1600.
    [45] Marin-Spiotta E, Chaopricha N T, Plante A F, et al. Long-term stabilization of deep soil carbon by fire and burial during early Holocene climate change[J]. Nature Geoscience, 2014, 7(6): 428—432.
    [46] Rumpel C, Kögel-Knabner I. Deep soil organic matter—A key but poorly understood component of terrestrial C cycle[J]. Plant and Soil, 2011, 338(1): 143—158.
    [47] Song Y H, Liu K, Dai H M, et al. The first report of the AMS14C age of Mollisol—Paleosol profile of Songliao Plain[J]. Geology in China, 2020, 47(6): 1926—1927. 宋运红, 刘凯, 戴慧敏, 等. 松辽平原典型黑土-古土壤剖面AMS14C年龄首次报道[J]. 中国地质, 2020, 47(6): 1926—1927.
    [48] Button E S, Pett-Ridge J, Murphy D V, et al. Deep-C storage: Biological, chemical and physical strategies to enhance carbon stocks in agricultural subsoils[J]. Soil Biology and Biochemistry, 2022, 170: 108697.
    [49] Song X D, Yang F, Ju B, et al. The influence of the conversion of grassland to cropland on changes in soil organic carbon and total nitrogen stocks in the Songnen Plain of Northeast China[J]. Catena, 2018, 171: 588—601.
    [50] Yan B X, Yang Y H, Liu X T, et al. Present situation and evolution trend of soil erosion in black soil region of Northeast China[J]. Soil and Water Conservation in China, 2008(12): 26—30. 阎百兴, 杨育红, 刘兴土, 等. 东北黑土区土壤侵蚀现状与演变趋势[J]. 中国水土保持, 2008(12): 26—30.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

龚可杨,杨飞,隆浩,谷俊,张甘霖.不同成土模式下黑土有机质热稳定性剖面分异特征[J].土壤学报,2024,61(3):662-673. DOI:10.11766/trxb202211180627 GONG Keyang, YANG Fei, LONG Hao, GU Jun, ZHANG Ganlin. Vertical Variations of Thermal Stability of Soil Organic Matter in Black Soils under Different Pedogenetic Modes[J]. Acta Pedologica Sinica,2024,61(3):662-673.

复制
分享
文章指标
  • 点击次数:414
  • 下载次数: 1635
  • HTML阅读次数: 946
  • 引用次数: 0
历史
  • 收稿日期:2022-11-18
  • 最后修改日期:2023-04-11
  • 录用日期:2023-05-08
  • 在线发布日期: 2023-05-08
  • 出版日期: 2024-05-15
文章二维码