长期耕作对典型黑土水力性质的影响
作者:
中图分类号:

S152.7

基金项目:

国家重点研发计划项目(2021YFD1500703)资助


Effects of Long-term Tillage on Hydraulic Properties of Typical Black Soils
Author:
Fund Project:

National Key Research and Development Program of China (No.2021YFD1500703)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [40]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    为揭示长期耕作对黑土耕地水文退化的作用,以典型黑土区不同纬度带的未经机械耕作的林地与长期耕作的耕地土壤进行对比,研究沟垄耕作对土壤垂直和水平方向物理性质和水力性质的影响。结果表明:长期耕作使得总体物理与土壤水力性质严重退化,与林地土壤相比,耕地土壤质地未发生变化,有机质含量显著降低,容重从1.03(0.84~1.17)g·cm–3显著提高至1.31(1.20~1.46)g·cm–3,穿透阻力显著增加,持水供水与导水性显著降低,有效含水量从0.19(0.14~0.23)cm3·cm–3降至0.15(0.10~0.21)cm3·cm–3。物理质量指数S值从0.061(优)降至0.025(差)。长期沟垄耕作使得犁底层的饱和导水率(6.61 cm·d–1)仅为耕作层的1/10.。耕作导致耕作层垂直方向导水率(64.67 cm·d–1)低于水平方向(82.84 ccm·d–1)。犁底层的穿透阻力(897.04 kPa)为耕作层的1.89倍,造成了耕作层与犁底层水力性质分层。长期耕作导致的耕地土壤水力性质分层和方向分异是促进耕地坡面径流“沟渠效应”而加速侵蚀退化的重要原因。

    Abstract:

    【Objective】Undisturbed woodland and cultivated land soils from vertical and horizontal directions were collected across different latitudes in typical black soil regions in Northeast China for this research. The objective was to investigate the effects of long-term tillage in cultivated land on the black soil hydrological degradation. 【Method】 Nine typical cultivated land units were selected across three latitudes, including Jiusan Farm Management Area in Nenjiang (48°46′N), Hailun (47°30′N), and Bayan County in Harbin (46°23′N). Intact soil cores were collected from 0-15 and 15-30 cm depths in vertical and horizontal directions to determine soil penetration resistance (SPR), and hydraulic properties (water retention and saturated hydraulic conductivity (Ks). 【Result】 Results showed that soil SPR significantly increased in cultivated land compared to woodland, and the SPR in tillage pan layer (15-30 cm) (897.04 kPa) was 1.89 times higher than that in woodland. Soil hydraulic properties also significantly decreased in cultivated land, whose soil available water decreased to 0.15 (0.10-0.21) cm3·–3 compared to 0.19(0.14-0.23) cm3·–3 in woodland. Using soil physical quality index S to assess the over black soil quality showed that S value decreased from excellent 0.061 (0.041-0.094) in woodland to poor 0.025 (0.009-0.040) in cultivated land. The degradation of cultivated land quality was attributed to the significant reduction in soil organic matter content and significant increase in soil bulk density (1.31 g·cm–3 in cultivated land vs. 1.03 g·cm–3 in woodland). Long-term ridge tillage resulted in a 10 times reduction in Ks in tillage pan layer (6.61 cm·d–1), and this can be attributed to the disruption of balance between tillage and tillage pan layer and enlargement of magnitude difference for Ks and bulk density between two layers. Tillage resulted in a lower Ks in the vertical direction (64.67 cm·d–1)than in the horizontal direction (82.84 cm·d–1) in the tillage layer. The Ks decreased in a larger degree in the vertical direction and less degree in the horizontal direction. Thus, this heterogeneity of Ks in directions interfered the original water movement direction in tillage layer. The low hydraulic conductivity of the plough pan tends to accumulate precipitation and produce lateral interflow.【Conclusion】 Generally, long-term tillage has severely degraded the physical and hydraulic properties of the soil. The huge difference of soil compactness and Ks between the tillage layer and plough pan produced an artificially stratified soil in cultivated land. The limitation of water infiltration is a dominant reason for the "furrow effect" in cultivated land.

    参考文献
    [1] Chinese Academy of Sciences. White Paper on Northeast Black Land(2020)[R]. Beijing, 2021. [中国科学院. 东北黑土地白皮书(2020)[R]. 北京, 2021.]
    [2] Yang W W, Zhang X P, Wang H Y. Study on soil and water loss and prevention technology of sloping land in blackland in the northeast[J]. Research of Soil and Water Conservation, 2005, 12(5):232-236. [杨文文, 张学培, 王洪英. 东北黑土区坡耕地水土流失及防治技术研究进展[J]. 水土保持研究, 2005, 12(5):232-236.]
    [3] Liu B Y, Zhang G L, Xie Y, et al. Delineating the black soil region and typical black soil region of northeastern China [J]. Chinese Science Bulletin, 2021, 66(1):96-106. [刘宝元, 张甘霖, 谢云, 等. 东北黑土区和东北典型黑土区的范围与划界[J]. 科学通报, 2021, 66(1):96-106.]
    [4] Chen X W, Zhang X P, Liang A Z, et al. Effects of tillage mode on black soil’s penetration resistance and bulk density[J]. Chinese Journal of Applied Ecology, 2012, 23(2):439-444. [陈学文, 张晓平, 梁爱珍, 等. 耕作方式对黑土硬度和容重的影响[J]. 应用生态学报, 2012, 23(2):439-444.]
    [5] Qi Z, Ding C, Han X, et al. Spatial heterogeneity of soil moisture and nutrients in valley-slope erosion watershed in black soil area[J]. Bulletin of Soil and Water Conservation, 2020, 40(5):79-87, 96. [祁志, 丁超, 韩兴, 等. 沟坡侵蚀汇水区黑土水分和养分的空间异质性[J]. 水土保持通报, 2020, 40(5):79-87, 96.]
    [6] Shi X H, Yang X M, Drury C F, et al. Impact of ridge tillage on soil organic carbon and selected physical properties of a clay loam in southwestern Ontario[J]. Soil and Tillage Research, 2012, 120:1-7.
    [7] Álvarez-Mozos J, Campo M Á, Giménez R, et al. Implications of scale, slope, tillage operation and direction in the estimation of surface depression storage[J]. Soil and Tillage Research, 2011, 111(2):142-153.
    [8] Gómez J A, Guzmán M G, Giráldez J V, et al. The influence of cover crops and tillage on water and sediment yield, and on nutrient, and organic matter losses in an olive orchard on a sandy loam soil[J]. Soil and Tillage Research, 2009, 106(1):137-144.
    [9] Yang Z, Liu X G, Ning J, et al. Effects of gully erosion on soil nutrients in ridge area of typical black soil[J]. Soils, 2017, 49(2):379-385. [杨子, 刘晓光, 宁静, 等. 典型黑土垄作区耕地沟蚀对土壤养分的影响研究[J]. 土壤, 2017, 49(2):379-385.]
    [10] Lin L, Shan B, Lu Q Q, et al. Water retention characteristics and pore size distribution of black soil under simulated mechanical compaction[J]. Journal of Northeast Forestry University, 2014, 42(12):102-105. [林琳, 单博, 卢倩倩, 等. 模拟机械压实黑土持水特征与孔隙分布[J]. 东北林业大学学报, 2014, 42(12):102-105.]
    [11] Wang Y L, Li J. Study of tillage patterns suitable for soil physicochemical properties and crop yields in wheat/maize fields[J]. Plant Nutrition and Fertilizer Science, 2014, 20(5):1139-1150.
    [12] Meng L Q, Li Y. The mechanism of gully development on sloping farmland in black soil area, northeast China[J]. Journal of Soil and Water Conservation, 2009, 23(1):7-11, 44. [孟令钦, 李勇. 东北黑土区坡耕地侵蚀沟发育机理初探[J]. 水土保持学报, 2009, 23(1):7-11, 44.]
    [13] Zhang B W, Yang Y M, Zhang X L, et al. Effects of continuous deep loosening on soil physical characteristics, organic carbon content and carbon pool index in black soil[J]. Soils and Fertilizers Sciences in China, 2019(2):6-13. [张博文, 杨彦明, 张兴隆, 等. 连续深松对黑土结构特性和有机碳及碳库指数影响[J]. 中国土壤与肥料, 2019(2):6-13.]
    [14] Qi J T, Tian X L, Liu K, et al. Soil water infiltration under mulch tillage affected by maize stovers returning in black soil areas[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(1):141-147. [齐江涛, 田辛亮, 刘凯, 等. 黑土区覆混耕作中玉米秸秆还田对土壤水分入渗性能的影响[J]. 农业工程学报, 2021, 37(1):141-147.]
    [15] Zhang X Y, Li J Y, Guo M J, et al. Effects of straw mulching and no tillage for continuous 14 years on soil and water conservation in mollisols sloping farmland[J]. Journal of Soil and Water Conservation, 2022, 36(3):44-50. [张兴义, 李健宇, 郭孟洁, 等. 连续14年黑土坡耕地秸秆覆盖免耕水土保持效应[J]. 水土保持学报, 2022, 36(3):44-50.]
    [16] Qiao J B, Zhu Y J, Jia X X, et al. Development of pedotransfer functions for soil hydraulic properties in the critical zone on the Loess Plateau, China[J]. Hydrological Processes, 2018, 32(18):2915-2921.
    [17] Wang L, Zheng F L, Shi H Q, et al. Impacts of seepage flow and soil thaw depth on hillslope snowmelt erosion in Chinese Mollisol region[J]. Chinese Journal of Applied Ecology, 2021, 32(12):4177-4185. [王伦, 郑粉莉, 师宏强, 等. 壤中流和土壤解冻深度对黑土坡面融雪侵蚀的影响[J]. 应用生态学报, 2021, 32(12):4177-4185.]
    [18] da Silva A P, Kay B D. Estimating the least limiting water range of soils from properties and management[J]. Soil Science Society of America Journal, 1997, 61(3):877-883.
    [19] Bouma J, Lanen.Transfer functions and threshold values:from soil characteristics to land qualities[J]. Quantified Land Evaluation, 1986, 6:106-110.
    [20] Xing X G, Liu Y, Garg A, et al. An improved genetic algorithm for determining modified water-retention model for biochar-amended soil[J]. Catena, 2021, 200:105-143.
    [21] van Genuchten M T. A closed form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America Journal, 1980, 44(5):892-898.
    [22] Dexter A R, Czyz E A. Applications of S-Theory in the study of soil physical degradation and its consequences[J]. Land Degradation & Development, 2007, 18(4):369-381.
    [23] Reynolds W D, Elrick D E. In situ measurement of field-saturated hydraulic conductivity, sorptivity, and the α-parameter using the Guelph permeameter[J]. Soil Science, 1985, 140(4):292-302.
    [24] Håkansson I, Voorhees W B, Riley H. Vehicle and wheel factors influencing soil compaction and crop response in different traffic regimes[J]. Soil and Tillage Research, 1988, 11(3/4):239-282.
    [25] Gao J S, Guo J J, Cui H N, et al. Effects of breaking plow pan thoroughly or partially on agronomic traits and yield of summer maize in the northern region of Huang-Huai-Hai Plain[J]. Shandong Agricultural Sciences, 2018, 50(3):36-40.[高建胜, 郭建军, 崔慧妮, 等. 黄淮海北部农田犁底层不同破除程度对夏玉米农艺性状及产量的影响[J]. 山东农业科学, 2018, 50(3):36-40.]
    [26] Tu A G. Advances in water infiltration and solute transport in layered soil[J]. Journal of Jiangxi Agricultural University, 2017, 39(4):818-825. [涂安国. 层状土壤水分入渗与溶质运移研究进展[J]. 江西农业大学学报, 2017, 39(4):818-825.]
    [27] Cho K W, Song K G, Cho J W, et al. Removal of nitrogen by a layered soil infiltration system during intermittent storm events[J]. Chemosphere, 2009, 76(5):690-696.
    [28] Wang W Y, Zhang J F, Wang Z R, et al. Infiltration reduction effect of sand layer in loess[J]. Journal of Hydraulic Engineering, 2005, 36(6):650-655 [王文焰, 张建丰, 汪志荣, 等. 砂层在黄土中的减渗作用及其计算[J]. 水利学报, 2005, 36(6):650-655]
    [29] Ren L D, Huang M B, Fan J. Study on water retention capacity for drained soils with different textural layering[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(19):105-111. [任利东, 黄明斌, 樊军. 不同类型层状土壤持水能力的研究[J]. 农业工程学报, 2013, 29(19):105-111.]
    [30] Zhang C, Jiang J S, Wang R B, et al. Influences of rainfall unsaturated infiltration on the change of heat transfer in soils[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(18):118-126. [张超, 姜景山, 王如宾, 等. 降雨非饱和入渗对土壤热量运移变化的影响[J]. 农业工程学报, 2020, 36(18):118-126.]
    [31] Wang Q J, Liu F, Jiao F, et al. Effects of deep tillage on water characteristics and dynamic changes of black soil[J]. Chinese Journal of Soil Science, 2018, 49(4):942-948. [王秋菊, 刘峰, 焦峰, 等. 深耕对黑土水分特征及动态变化影响[J]. 土壤通报, 2018, 49(4):942-948.]
    [32] Schenk H J, Jackson R B. Mapping the global distribution of deep roots in relation to climate and soil characteristics[J]. Geoderma, 2005, 126(5):129-140.
    [33] Tao Y, Zou Z Q, Guo L, et al. Linking soil macropores, subsurface flow and its hydrodynamic characteristics to the development of Benggang erosion[J]. Journal of Hydrology, 2020, 586:124829.
    [34] Shao D G, Yang X, Xu B L, et al. Field experiment and simulation of lateral and vertical water flow in multi-layer soil in hilly region of southern China[J]. Journal of Hydraulic Engineering, 2017, 48(7):799-807. [邵东国, 杨霞, 徐保利, 等. 南方丘陵区多层土壤结构水平和垂向渗流特征试验与模拟研究[J]. 水利学报, 2017, 48(7):799-807.]
    [35] Hu G R, Wang Q, Song X Y, et al. Effects of ditch covering materials on soil temperature, crop yield and water use efficiency of ridge and ditch rainwater harvesting[J]. Chinese Journal of Ecological Agriculture, 2016, 24(5):590-599. [胡广荣, 王琦, 宋兴阳, 等. 沟覆盖材料对垄沟集雨种植土壤温度、作物产量和水分利用效率的影响[J]. 中国生态农业学报, 2016, 24(5):590-599.]
    [36] She D L, Zhang Y, Shao M A. Improved design of locally compacted ridge-furrow fertilizing machine [J]. Transactions of the Chinese Society of Agricultural Engineering, 2008, 24(4):151-154. [佘冬立, 张勇, 邵明安. 成垄压实耕作施肥机械的改进设计[J]. 农业工程学报, 2008, 24(4):151-154.]
    [37] Meng L Q. Study on gully erosion mechanism and prevention mode in black soil area of Northeast China[D]. Beijing:Chinese Academy of Agricultural Sciences, 2009. [孟令钦. 东北黑土区沟蚀机理及防治模式的研究[D]. 北京:中国农业科学院, 2009.]
    [38] Liu H H, Zhang T Y, Liu B Y, et al. Effects of gully erosion and gully filling on soil depth and crop production in the black soil region, northeast China[J]. Environmental Earth Sciences, 2013, 68(6):1723-1732.
    [39] Zhou Y L, Lu B F. Mechanical compaction of black soil:Impact on soil structure and sugar beet yield[J]. Chinese Agricultural Science Bulletin, 2019, 35(32):84-88. [周艳丽, 卢秉福. 黑土机械压实对土壤结构和甜菜产量的影响[J]. 中国农学通报, 2019, 35(32):84-88.]
    [40] Wang E H, Chai Y F, Chen X W. Effects of heavy machinery operation on the structural characters of cultivated soils in black soil region of Northeast China[J]. Chinese Journal of Applied Ecology, 2008, 19(2):351-356. [王恩姮, 柴亚凡, 陈祥伟. 大机械作业对黑土区耕地土壤结构性特征的影响[J]. 应用生态学报, 2008, 19(2):351-356.]
    相似文献
    引证文献
引用本文

黄怡婷,陈俊熹,高钰淏,李馨月,邹自强,陈家宙.长期耕作对典型黑土水力性质的影响[J].土壤学报,2024,61(4):998-1008. DOI:10.11766/trxb202212010665 HUANG Yiting, CHEN Junxi, GAO Yuhao, LI Xinyue, ZOU Ziqiang, CHEN Jiazhou. Effects of Long-term Tillage on Hydraulic Properties of Typical Black Soils[J]. Acta Pedologica Sinica,2024,61(4):998-1008.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-12-01
  • 最后修改日期:2023-09-24
  • 录用日期:2023-10-20
  • 在线发布日期: 2023-10-23
  • 出版日期: 2024-07-15
文章二维码