水分非饱和条件下土壤矿物界面有毒有机物转化机制研究进展
作者:
作者单位:

南京农业大学土壤有机污染控制与修复研究所

作者简介:

通讯作者:

中图分类号:

基金项目:

国家杰出青年科学基金项目(41925029)和江苏省碳达峰碳中和科技创新专项资金项目(20220013)资助


Research Progress on the Transformation Mechanism of Toxic Organic Pollutants on Soil Mineral Interface Under Water-unsaturated Conditions
Author:
Affiliation:

Institute of Organic Contaminant Control and Soil Remediation, Nanjing Agricultural University

Fund Project:

Supported by the National Science Fund for Distinguished Young Scholars, China ( No. 41925029 ) and the Jiangsu Provincial Special Fund for S&T Innovation in Carbon Emission Peak and Neutrality, China ( No. 20220013 )

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    土壤矿物作为土壤重要活性组分,可驱动土壤有毒有机物化学转化,降低污染风险。以往土壤矿物与有毒有机物界面行为研究主要集中于水环境或矿物悬浊液体系,然而实际环境中土壤及其矿物常处于干燥、湿润等水分非饱和状态。近年来,水分非饱和条件下土壤矿物界面有毒有机物转化及机制已成为研究热点,相关研究获得一系列新发现。低含水量铁锰矿物、黏土矿物和金属离子饱和黏土矿物能驱动多环芳烃、抗生素等疏水性有毒有机物化学转化。水分非饱和环境会减弱矿物界面水分子与有毒有机物竞争活性位点,并使矿物发生脱水、向高活性结构转变。此外,土壤矿物水分状态也会影响有毒有机物转化产物,水分非饱和环境更有利于持久性自由基和卤代二噁英等中间产物的形成和稳定。以往研究认为,电子转移反应是土壤矿物界面有毒有机物转化机制,随着检测技术与理论计算的发展,自由基催化和水解作用机制逐渐被发现,相关机制研究精准至矿物晶型和晶面层面。虽然水分非饱和条件下土壤矿物界面有毒有机物转化及机制已逐渐清晰,但其研究广度和深度有待进一步拓宽和加深。建议未来在实际水分非饱和土壤和矿物中开展有毒有机物转化研究,深入探究还原转化过程,研发原位反应装置及检测方法,尝试从微纳米尺度和分子水平解析有毒有机物在矿物界面转化机制。

    Abstract:

    Minerals are critical active components of soils, which can drive the chemical transformation of toxic organic pollutants in the soil environment and reduce the risk of environmental contamination. Previous studies of the interface behavior of toxic organic pollutants on soil mineral surfaces mainly focused on the water environment or mineral suspension systems. Natural soils, especially surface soils, are usually under water-unsaturated conditions. In recent years, the transformation mechanism of toxic organic pollutants on water-unsaturated soil mineral surfaces has attracted considerable attention, and a series of fascinating discoveries have been made. The water-unsaturated iron and manganese minerals, clay minerals and metal ion-saturated clay minerals drive the transformation of the hydrophobic toxic organic pollutants such as polycyclic aromatic hydrocarbons and antibiotics. Water molecules at the interface of water-unsaturated minerals have weak competition with toxic organic pollutants for active sites, and the dehydration process of minerals also makes them change to highly active structures. However, an appropriate increase in the moisture of dry soil minerals can enhance the transformation of toxic organic pollutants. A small amount of water molecules can improve mass transfer and promote the transfer of toxic organic pollutants to the active sites of soil minerals. The different moisture state of soil minerals leads to the formation of various products. The water-unsaturated condition is more conducive to the formation and stability of persistent free radicals and halogenated dioxins. Also, the transformation of toxic organic pollutants is influenced by the catalytic activity of soil minerals and the physical and chemical properties of toxic organic pollutants. In previous studies, electron transfer reaction was considered as the transformation mechanism of toxic organic pollutants on soil minerals. However, free radical catalysis and hydrolysis mechanisms have been gradually discovered. Transition metal elements in iron manganese minerals and metal ion-saturated clay minerals can receive or give electrons during the transformation of toxic organic pollutants. The defects of soil minerals tend to induce the generation of active free radicals. While, the active hydroxyl, Br?nsted acid sites, and Lewis acid sites in soil minerals can accelerate the hydrolysis of toxic organic pollutants. The development of detection technology and theoretical calculation has made the relevant mechanisms precise to the mineral crystal type and plane structure. Additionally, Soil, a complex system, is mainly composed of minerals, organic matter, and microorganisms. And organic matter and microorganisms have an important effect on the transformation of toxic organic pollutants at the mineral interface. Most notably, they can promote the reduction of mineral dissolution, and improve the reduction of toxic organic pollutants. Although the transformation and mechanism of toxic organic pollutants at the interface of water-unsaturated minerals have been gradually evident, the breadth and depth of the research need to be further expanded and deepened. It is suggested that future research focus on the following aspects: reveal the transformation of toxic organic pollutants in the natural soil systems, strengthen the research on the reduction and transformation processes, develop the in situ reaction devices and detection methods, and analyze the transformation mechanism of toxic organics at the mineral interface from micro and nanoscale and molecular level.

    参考文献
    相似文献
    引证文献
引用本文

程鹏飞,赵旭强,高彦征.水分非饱和条件下土壤矿物界面有毒有机物转化机制研究进展[J].土壤学报,2024,61(3). DOI:10.11766/trxb202212180694 CHENG Pengfei, ZHAO Xuqiang, GAO Yanzheng. Research Progress on the Transformation Mechanism of Toxic Organic Pollutants on Soil Mineral Interface Under Water-unsaturated Conditions[J]. Acta Pedologica Sinica,2024,61(3).

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-12-18
  • 最后修改日期:2023-05-09
  • 录用日期:2023-06-01
  • 在线发布日期: 2023-06-05
  • 出版日期: