江苏水稻种植方式碳足迹和经济效益综合评价
作者:
中图分类号:

S19

基金项目:

江苏省重点研发计划(现代农业)项目(BE2022308-1)资助


Carbon Footprint and Economic Benefits Analysis of Rice Planting Patterns in Jiangsu Province
Author:
Fund Project:

The Jiangsu Key Research and Development Plan: Modern Agriculture (No. BE2022308-1)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [40]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    系统分析水稻不同种植方式碳足迹及经济效益对水稻生产碳减排和发展低碳农业具有重要意义,目前在省级尺度上关于不同水稻种植方式碳足迹和经济效益综合评价的研究尚少见报道。基于江苏水稻农情调查数据,利用生命周期评价方法定量分析江苏水稻不同种植方式碳足迹及经济效益。结果表明,2016—2020年不同水稻种植方式单位面积碳足迹为11.28~14.39 t·hm–2,单位产量碳足迹为1.30~1.52 kg·kg–1,单位产值碳排放为0.49~0.58 kg·yuan–1,单位面积碳足迹、单位产量碳足迹和单位产值碳足迹从大到小依次为抛秧水稻或手插水稻、机插水稻、直播水稻。机插水稻和手插水稻生产单位面积碳足迹随年份的增加呈下降趋势。机插水稻、手插水稻和直播水稻单位产量碳足迹随年份的变化呈下降趋势。不同水稻生产种植方式碳足迹中占比最大的是稻田甲烷排放,其次为氮肥施用导致的碳足迹、稻田氧化亚氮排放和灌溉用电导致的碳足迹。氮肥和灌溉用电是影响不同水稻种植方式碳足迹差异的主要驱动因素。不同水稻种植方式总收益为2.51×103~2.75×103 yuan·hm–2,资源投入成本为1.88×103~1.99×103 yuan·hm–2,碳排放成本为0.20×103~0.25×103yuan·hm–2,考虑碳排放的净收益(NI-CO2)为0.39×103~0.64×103 yuan·hm–2。机插水稻NI-CO2低于其他三种水稻种植方式,这与机插水稻较高的总收益和较低的资源投入成本和较低的碳排放成本有关。综上所述,仅考虑碳排放,直播水稻是最为低碳的水稻种植方式,综合碳排放和经济效益,机插水稻优于手插、直播和抛秧水稻。

    Abstract:

    【Objective】Little or no research has been done on the carbon footprint and economic benefits of different rice planting patterns at the provincial level. Thus, a systematic analysis of the carbon footprint and economic benefits of different rice planting patterns is of great significance for carbon emission reduction of rice production and the development of low-carbon agriculture.【Method】Based on the survey data of rice farming in Jiangsu Province, the carbon footprint and economic benefits of different rice planting patterns in Jiangsu Province were quantitatively analyzed by using the life cycle assessment method.【Result】The results showed that from 2016 to 2020, the carbon footprint per unit area, the carbon footprint per unit yield, and the carbon footprint per unit value were 11.28-14.39 t·hm–2,, 1.30-1.52 kg·kg–1 and 0.49-0.58 kg·yuan–1, respectively. The carbon footprint per unit area, per unit yield and per unit output value of different rice production and planting patterns were in order of broadcasted seeding rice or manual transplanting rice, mechanical transplanting rice, direct seeding rice. The carbon footprint per unit area of mechanical transplanting rice and manual transplanting rice production showed a decreased trend with the increase of years. Also, the carbon footprint per unit yield of mechanical transplanting rice, manual transplanting rice, and direct seeding rice production showed a decreased trend with the increase of years. Methane emissions from rice fields accounted for the largest proportion, followed by carbon footprints caused by nitrogen fertilization, nitrous oxide emissions from rice fields and carbon footprints caused by irrigation electricity. Nitrogen fertilizer and irrigation electricity were the main driving factors affecting the regional differences in the carbon footprint of different rice planting patterns. The total income of different rice planting patterns was between 2.51×103- 2.75×103 yuan·hm–2, the resource input cost was 1.88×103- 1.99×103 yuan·hm–2, the carbon emission cost was 0.20×103- 0.25×103 yuan·hm–2, and the net income (NI-CO2) considering carbon emissions was 0.39×103- 0.64×103 yuan·hm–2. The NI-CO2 of mechanical transplanting rice was lower than that of manual transplanting rice, broadcasted seeding rice and direct seeding rice. This was mainly caused by the higher total income and the lower resource input cost and carbon emission cost of mechanical transplanting rice.【Conclusion】In conclusion, direct seeding rice was the lowest carbon emission rice planting pattern. Considering the carbon emission and economic benefits, machinal transplanting rice was superior to manual transplanting rice, direct seeding rice and broadcasted seeding rice.

    参考文献
    [1] Ministry of Ecology and Environment. The Second biennial update report on climate change of the People’s Republic of China[EB/OL].(2018-12-12)[2022-11-15]. https://www.mee.gov.cn/ywgz/ydqhbh/wsqtkz/201907/P020190701765971866571.pdf.[生态环境部. 中华人民共和国气候变化第二次两年更新报告[EB/OL].(2018-12-12)[2022-11-15]. https://www.mee.gov.cn/ywgz/ydqhbh/wsqtkz/201907/P020190701765971866571.pdf.]
    [2] Yan S J, Deng A X, Shang Z Y, et al. Characteristics of carbon emission and approaches of carbon mitigation and sequestration for carbon neutrality in China’s crop production[J]. Acta Agronomica Sinica, 2022, 48(4):930-941. [严圣吉, 邓艾兴, 尚子吟, 等. 我国作物生产碳排放特征及助力碳中和的减排固碳途径[J]. 作物学报, 2022, 48(4):930-941.]
    [3] Galli A, Wiedmann T, Ercin E, et al. Integrating Ecological, Carbon and Water footprint into a “Footprint Family” of indicators:Definition and role in tracking human pressure on the planet[J]. Ecological Indicators, 2012, 16:100-112.
    [4] Li Y P, Wu W A, Yang J X, et al. Exploring the environmental impact of crop production in China using a comprehensive footprint approach[J]. Science of the Total Environment, 2022, 824:153898.
    [5] Wang X, Zhao X, Wang Y Q, et al. Assessment of the carbon footprint of rice production in China[J]. Resources Science, 2017, 39(4):713-722. [王兴, 赵鑫, 王钰乔, 等. 中国水稻生产的碳足迹分析[J]. 资源科学, 2017, 39(4):713-722.]
    [6] Yan M, Cheng K, Luo T, et al. Carbon footprint of grain crop production in China-based on farm survey data[J]. Journal of Cleaner Production, 2015, 104:130-138.
    [7] Chen Z D, Li F B, Feng J F, et al. Study on carbon footprint for rice-wheat rotation system in the lower reaches of Yangtze River-Based on the life cycle assessment[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2019, 40(12):81-90. [陈中督, 李凤博, 冯金飞, 等. 长江下游地区稻麦轮作模式碳足迹研究——基于生命周期评价[J]. 中国农业资源与区划, 2019, 40(12):81-90.]
    [8] Chen Z D, Xu C C, Ji L, et al. Comprehensive evaluation for carbon and nitrogen footprints of rice-wheat rotation system in Middle Yangtze River Basin[J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(7):1125-1133. [陈中督, 徐春春, 纪龙, 等. 长江中游地区稻麦生产系统碳足迹及氮足迹综合评价[J]. 植物营养与肥料学报, 2019, 25(7):1125-1133.]
    [9] Huang X M, Chen C Q, Chen M Z, et al. Carbon footprints of major staple grain crops production in three provinces of Northeast China during 2004-2013[J]. Chinese Journal of Applied Ecology, 2016, 27(10):3307-3315. [黄晓敏, 陈长青, 陈铭洲, 等. 2004-2013年东北三省主要粮食作物生产碳足迹[J]. 应用生态学报, 2016, 27(10):3307-3315.]
    [10] Zhang H Y, Qin L J, Jia L. Temporal and spatial characteristics of carbon footprint and water footprint in rice production in Jilin Province[J]. Acta Agriculturae Zhejiangensis, 2021, 33(6):974-983. [张惠云, 秦丽杰, 贾利. 吉林省水稻生产的碳足迹与水足迹时空变化特征[J]. 浙江农业学报, 2021, 33(6):974-983.]
    [11] Liu J J, Chen H. Assessment of carbon footprint of rice production in Heilongjiang Province[J]. Journal of Southern Agriculture, 2018, 49(8):1667-1673. [刘建君, 陈红. 黑龙江省水稻生产碳足迹分析[J]. 南方农业学报, 2018, 49(8):1667-1673.]
    [12] Zhang C H, Han L, Xie J N, et al. Carbon footprint dynamics and composition assessment of major crops production in Jiangsu Province[J]. Journal of Nanjing University of Information Science & Technology:Natural Science Edition, 2022, 14(1):110-119. [张传红, 韩露, 谢佳男, 等. 江苏省主要农作物碳足迹动态及其构成研究[J]. 南京信息工程大学学报:自然科学版, 2022, 14(1):110-119.]
    [13] Cao L M, Li M B, Wang X Q, et al. Life cycle assessment of carbon footprint for rice production in Shanghai[J]. Acta Ecologica Sinica, 2014, 34(2):491-499. [曹黎明, 李茂柏, 王新其, 等. 基于生命周期评价的上海市水稻生产的碳足迹[J]. 生态学报, 2014, 34(2):491-499.]
    [14] Jiangsu Municipal Statistics Bureau. Jiangsu Statistical Yearbook-2021[EB/OL].(2021-10)[2022-10-24]. http://tj.jiangsu.gov.cn/2021/indexc.htm. [江苏省统计局. 江苏统计年鉴-2021[EB/OL].(2021-10)[2022-10-24]. http://tj.jiangsu.gov.cn/2021/indexc.htm.]
    [15] Price Department of National Development and Reform Commission. National cost-benefit survey for agricultural product[M]. Beijing:China Statistics Press, 2016-2020. [发展和改革委员会价格司. 全国农产品成本收益资料汇编[M]. 北京:中国统计出版社, 2016-2020.]
    [16] Sun J F, Wang M H, Xu X R, et al. Re-estimating methane emissions from Chinese paddy fields based on a regional empirical model and high-spatial-resolution data[J]. Environmental Pollution, 2020, 265:115017.
    [17] Hang X N, Zhang X, Song C L, et al. Differences in rice yield and CH4 and N2O emissions among mechanical planting methods with straw incorporation in Jianghuai area, China[J]. Soil and Tillage Research, 2014, 144:205-210.
    [18] Liu S W, Zhang Y J, Lin F, et al. Methane and nitrous oxide emissions from direct-seeded and seedling- transplanted rice paddies in southeast China[J]. Plant and Soil, 2014, 374(1):285-297.
    [19] Zhang Y F, Chen L G, Zhang C S, et al. Influence of rice mechanical planting methods on methane and nitrous oxide emissions from paddy field[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(14):232-241. [张岳芳, 陈留根, 张传胜, 等. 水稻机械化播栽对稻田甲烷和氧化亚氮排放的影响[J].农业工程学报, 2015, 31(14):232-241.]
    [20] Yue Q, Wu H, Sun J F, et al. Deriving emission factors and estimating direct nitrous oxide emissions for crop cultivation in China[J]. Environmental Science & Technology, 2019, 53(17):10246-10257.
    [21] Tian L L, Cai Y J, Akiyama H. A review of indirect N2O emission factors from agricultural nitrogen leaching and runoff to update of the default IPCC values[J]. Environmental Pollution, 2019, 245:300-306.
    [22] Chen Z D, Xu C C, Ji L, et al. Carbon footprint analysis of double cropping rice production in the middle Yangtze River valley based on household surveys[J]. Chinese Journal of Rice Science, 2018, 32(6):601-609. [陈中督, 徐春春, 纪龙, 等. 基于农户调查的长江中游地区双季稻生产碳足迹及其构成[J].中国水稻科学, 2018, 32(6):601-609.]
    [23] Xia L L, Ti C P, Li B L, et al. Greenhouse gas emissions and reactive nitrogen releases during the life-cycles of staple food production in China and their mitigation potential[J]. Science of the Total Environment, 2016, 556:116-125.
    [24] Chen S, Lu F, Wang X K. Estimation of greenhouse gases emission factors for China’s nitrogen, phosphate, and potash fertilizers[J]. Acta Ecologica Sinica, 2015, 35(19):6371-6383. [陈舜, 逯非, 王效科. 中国氮磷钾肥制造温室气体排放系数的估算[J]. 生态学报, 2015, 35(19):6371-6383.]
    [25] National Bureau of Statistics. National Statistical Yearbook[EB/OL]. [2023-2-20]. https://data.stats.gov.cn/easyquery.htm?cn=E0103. [国家统计局. 中国统计年鉴[EB/OL].[2023-2-20]. https://data.stats.gov.cn/easyquery.htm?cn=E0103.]
    [26] Tao Y, Chen Q, Peng S B, et al. Lower global warming potential and higher yield of wet direct-seeded rice in Central China[J]. Agronomy for Sustainable Development, 2016, 36(2):24.
    [27] Linquist B, van Groenigen K J, Adviento-Borbe M A, et al. An agronomic assessment of greenhouse gas emissions from major cereal crops[J]. Global Change Biology, 2012, 18(1):194-209.
    [28] Zhang X X, Yin S, Li Y S, et al. Comparison of greenhouse gas emissions from rice paddy fields under different nitrogen fertilization loads in Chongming Island, Eastern China[J]. Science of the Total Environment, 2014, 472:381-388.
    [29] Chen Z D, Chen F, Zhang H L, et al. Effects of nitrogen application rates on net annual global warming potential and greenhouse gas intensity in double-rice cropping systems of the Southern China[J]. Environmental Science and Pollution Research, 2016, 23(24):24781-24795.
    [30] Jiang Y, Carrijo D, Huang S, et al. Water management to mitigate the global warming potential of rice systems:A global meta-analysis[J]. Field Crops Research, 2019, 234:47-54.
    [31] Haque M M, Kim G W, Kim P J, et al. Comparison of net global warming potential between continuous flooding and midseason drainage in monsoon region paddy during rice cropping[J]. Field Crops Research, 2016, 193:133-142.
    [32] Zhou S, Zhang X X, Wang C, et al. Research progress and prospects of water and crop residue managements to mitigate greenhouse gases emissions from paddy field[J]. Journal of Agro-Environment Science, 2020, 39(4):852-862. [周胜, 张鲜鲜, 王从, 等. 水分和秸秆管理减排稻田温室气体研究与展望[J]. 农业环境科学学报, 2020, 39(4):852-862.]
    [33] Ji H T, Zhou W, Guo Z, et al. Comprehensive evaluation for the influence of substituting fertilizer by pig manure on agronomic effect, safety effect and economic benefit of rice[J]. Jiangsu Journal of Agricultural Sciences, 2021, 37(6):1451-1459. [纪洪亭, 周炜, 郭智, 等. 猪粪有机肥替代化学氮肥对水稻农学效应、安全效应及经济效益影响的综合评价[J]. 江苏农业学报, 2021, 37(6):1451-1459.]
    [34] Xia L L, Wang S W, Yan X Y. Effects of long-term straw incorporation on the net global warming potential and the net economic benefit in a rice-wheat cropping system in China[J]. Agriculture, Ecosystems & Environment, 2014, 197:118-127.
    [35] Li J, Yang H J, Sun T Q, et al. Analysis and application evaluation of rice yield and benefit under different planting methods in Jiangsu Province[J]. Jiangsu Agricultural Sciences, 2016, 44(9):520-523. [李杰, 杨洪建, 孙统庆, 等. 江苏省不同种植方式水稻产量效益分析及应用评价[J].江苏农业科学, 2016, 44(9):520-523.]
    [36] Zhao B H, Dai Z Y, Xie C L, et al. Research and application progress and development strategy of direct seeding rice[J]. Jiangsu Agricultural Sciences, 2010, 38(5):13-15. [赵步洪, 戴正元, 谢成林, 等. 直播水稻的研究与应用进展及发展策略[J]. 江苏农业科学, 2010, 38(5):13-15.]
    [37] Sun T Q, Yang H J, Li J, et al. Retrospect and disadvantages analysis of Jiangsu direct-sowing rice and its countermeasures[J]. China Rice, 2014, 20(6):5-9. [孙统庆, 杨洪建, 李杰, 等. 江苏直播稻发展历程回顾、弊端分析及其对策探讨[J]. 中国稻米, 2014, 20(6):5-9.]
    [38] Zhang Y F, Zheng J C, Chen L G, et al. Effects of wheat straw returning and soil tillage on CH4 and N2O emissions in paddy season[J]. Ecology and Environmental Sciences, 2009, 18(6):2334-2338. [张岳芳, 郑建初, 陈留根, 等. 麦秸还田与土壤耕作对稻季CH4和N2O排放的影响[J]. 生态环境学报, 2009, 18(6):2334-2338.]
    [39] Yue Q, Wu S Y, Zhang Y F, et al. Life cycle assessment on greenhouse effects and economic benefits for different paddy rice-upland rotation systems[J]. Journal of Agro-Environment Science, 2022, 41(8):1825-1835. [岳骞, 吴思远, 张岳芳, 等. 不同水旱轮作模式全生命周期温室效应及经济效益评价[J].农业环境科学学报, 2022, 41(8):1825-1835.]
    [40] Zhang W J, Zhang Y, Deng A X, et al. Integrated impacts and trend analysis of rice cultivar renewal and planting technology improvement on carbon emission in China[J]. China Rice, 2021, 27(4):53-57. [张卫建, 张艺, 邓艾兴, 等. 我国水稻品种更新与稻作技术改进对碳排放的综合影响及趋势分析[J]. 中国稻米, 2021, 27(4):53-57.]
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

季国军,纪洪亭,程琨,刘满强,江瑜,胡正锟,张岳芳,胡乃娟,胡锋.江苏水稻种植方式碳足迹和经济效益综合评价[J].土壤学报,2024,61(4):1042-1054. DOI:10.11766/trxb202212180695 JI Guojun, JI Hongting, CHENG Kun, LIU Manqiang, JIANG Yu, HU Zhengkun, ZHANG Yuefang, HU Naijuan, HU Feng. Carbon Footprint and Economic Benefits Analysis of Rice Planting Patterns in Jiangsu Province[J]. Acta Pedologica Sinica,2024,61(4):1042-1054.

复制
分享
文章指标
  • 点击次数:244
  • 下载次数: 2611
  • HTML阅读次数: 1824
  • 引用次数: 0
历史
  • 收稿日期:2022-12-18
  • 最后修改日期:2023-02-28
  • 录用日期:2023-04-18
  • 在线发布日期: 2023-04-23
  • 出版日期: 2024-07-15
文章二维码