叶面喷施山梨醇螯合钾对花生产量及根际土壤微生物群落的影响
作者:
中图分类号:

S565.2

基金项目:

国家自然科学基金项目(31972516)与山东省重点研发计划项目(2017GNC11116)共同资助


Effects of Foliar Spraying of Sorbitol Chelated Potassium on Peanut Yield and Rhizosphere Soil Microbial Community
Author:
Fund Project:

Supported by the National Natural Science Foundation of China (No. 31972516) and the Key Research and Development Program of Shandong Province, China (No. 2017GNC11116)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [33]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    中国农用钾肥严重依赖进口,通过改变钾元素的存在形态进一步提高钾的利用效率,具有重要现实意义。以花生(品种为花育22)为供试作物,2020—2021年连续进行了两季大田试验,采用完全随机区组设计,考察自由离子态钾(无机盐钾)与山梨醇螯合态钾对花生产量、干物质积累量、钾积累量以及花生根际土壤细菌群落结构的影响。在常规施肥基础上进行花生不同生育期喷施试验,设置清水对照(CK)、无机钾(IK)、山梨醇混合无机钾(MK)、山梨醇螯合钾(SK,自制)和市售螯合钾(LK,国外产品)5个处理。结果表明,叶面追施钾肥可显著提高花生产量,与IK或LK处理相比,SK处理两年平均增产率分别提高18.9%、14.97%,产量构成要素百仁重、百果重、饱果率均得到显著提升;山梨醇螯合钾处理的花生植株干物质积累量、钾积累量均得到显著提高,说明自制山梨醇螯合钾能够促进钾营养元素在植株中的分配。与其他处理相比,山梨醇螯合钾处理增加了花生根际土壤微生物多样性与丰富度。相关性分析表明,产量的增加与钾元素吸收、分配及根际微生物变化显著相关。综上,在相同的施钾水平上,与无机盐钾形态相比,山梨醇螯合钾更能促进花生植株对钾素的吸收和积累,综合表现为产量的增加。该研究结果可为提高钾肥利用效率提供理论及实际参考。

    Abstract:

    【Objective】China depends heavily on agricultural potassium fertilizer imported from abroad. Thus, it is important to improve potassium utilization efficiency by changing the existing forms of potassium.【Method】In this paper, a two-year field trial (in 2020 and 2021) was set up using Virginia-type peanut Huayu 22 to investigate the effects of inorganic potassium (free ionic state) and sorbitol chelated potassium on peanut yield, dry matter accumulation, potassium accumulation, and bacterial community structure in peanut rhizosphere soil by a completely randomized block design. Under the premise of conventional fertilization, peanut spraying experiments were carried out at different growth stages and with five treatments: CK, water control; IK, inorganic potassium; MK, sorbitol mixed inorganic potassium; SK, sorbitol chelated potassium (self-made); and LK, commercially available chelated potassium (Canada).【Result】The results showed that foliar topdressing potassium fertilizer on leaves could significantly increase the peanut yield. Compared with the treatment of IK or LK treatments, the two-year average yield of SK treatments increased by 18.9% and 14.97%, respectively. The yield components of 100-seed weight, 100-pod weight, and full fruit rate were all significantly improved. Also, the dry matter accumulation and potassium accumulation of peanut plants treated with sorbitol-chelated potassium were significantly increased. Compared with CK, IK, and LK treatments, the total dry matter of peanut plants treated with SK increased by 19.5%, 19.1%, and 15.7% in the stage of the full pod, and increased by 22.8%, 27.4%, and 11.7% at the mature stage, respectively. Potassium accumulation in peanut kernels increased by 30.6%, 49.8% and, 44.8% in the stage of full pod, and increased by 30.8%, 59.1%, and 10.8% at the mature stage, respectively. The above results showed that self-made sorbitol-chelated potassium could promote the absorption and distribution of potassium nutrients in plants. Furthermore, the microbial diversity and richness of peanut rhizosphere soil increased under SK treatment compared with the other treatments. Compared with CK, MK, and LK treatments, the Sobs index of microbial communities in SK treatment increased by 10.7%, 12.5%, and 10.7%, respectively. The species significantly enriched in SK treatment were p-Verrucomicrobiota_g-Roseimicrobium and p-Planctomycetota_c-vadinHA49. The correlation analysis showed that the increase in production was significantly related to the absorption and distribution of potassium and the changes in rhizosphere microorganisms.【Conclusion】In summary, compared with inorganic potassium form, sorbitol-chelated potassium could promote the absorption and accumulation of potassium in peanuts at the same potassium application level, which is comprehensively reflected in production. The research results could provide theoretical and practical references for improving potassium efficiency.

    参考文献
    [1] Tan H T, Sun W, Cui Y Z, et al. Present situation of potash resources and analysis of development and application of polyhalite[J]. Inorganic Chemicals Industry, 2022, 54(6):23-30. [谭慧婷, 孙伟, 崔玉照, 等. 钾矿资源现状与杂卤石的开发应用分析[J]. 无机盐工业, 2022, 54(6):23-30.]
    [2] Xia G M, Wang R M, Huang X, et al. Effects of nitrogen application rates on CO2 sequestration and emissions, and yield in peanut field under regulated deficit irrigation[J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(6):349-358. [夏桂敏, 王瑞敏, 黄旭, 等. 调亏灌溉下施氮量对农田CO2固定排放和花生产量的影响[J]. 农业机械学报, 2022, 53(6):349-358.]
    [3] Kang L Y, Li X H, Gao N N, et al. Effect of postponed potassium-fertilizer topdressing on its absorption utilization and the yield of muskmelon[J]. Journal of Gansu Agricultural University, 2021, 56(2):76-82, 89. [康利允, 李晓慧, 高宁宁, 等. 钾肥追施时期后移对甜瓜钾吸收利用及产量的影响[J]. 甘肃农业大学学报, 2021, 56(2):76-82, 89.]
    [4] Ma J Z, Zhang M, Liu Z G, et al. Effects of foliar application of the mixture of copper and chelated iron on the yield, quality, photosynthesis, and microelement concentration of table grape(Vitis vinifera L.)[J]. Scientia Horticulturae, 2019, 254:106-115.
    [5] Li T S, Wei Q Q, Sun W, et al. Spraying sorbitol-chelated calcium affected foliar calcium absorption and promoted the yield of peanut(Arachis hypogaea L)[J]. Frontiers in Plant Science, 2022, 13:1075488.
    [6] Li T S, Wei Q Q, Huang M L, et al. Research progresses on the application of sugar alcohol chelated fertilizers in agriculture[J]. Acta Pedologica Sinica, 2021, 58(6):1393-1403. [李腾升, 魏倩倩, 黄明丽, 等. 糖醇螯合肥在农业上的应用研究进展[J]. 土壤学报, 2021, 58(6):1393-1403.]
    [7] Hua K K, Wang D Z, Guo Z B, et al. Effects of long-term fertilization on soil potassium utilization and budgeting in vertisol relative to application method[J]. Acta Pedologica Sinica, 2017, 54(4):978-988. [花可可, 王道中, 郭志彬, 等. 施肥方式对砂姜黑土钾素利用及盈亏的影响[J]. 土壤学报, 2017, 54(4):978-988.]
    [8] Yan D Y, Sun W, Li P C, et al. Preparation and detection method of sorbitol chelated potash fertilizer:CN113603511A[P]. 2021-11-05. [颜冬云, 孙伟, 李鹏超, 等. 一种山梨醇螯合钾肥的制备及检测方法:CN113603511A[P]. 2021-11-05.]
    [9] Cui Y Z, Yan D Y, Niu J H, et al. Method for determining chelation rate of sugar alcohol chelated potassium by combining organic solvent precipitation method and spectrophotometric method:CN113686644A[P]. 2021- 11-23. [崔玉照, 颜冬云, 牛军浩, 等. 有机溶剂沉淀法和分光光度法联用测定糖醇螯合钾螯合率的方法:CN113686644A[P]. 2021-11-23.]
    [10] Bao S D. Soil and agricultural chemistry analysis[M].3rd ed. Beijing:China Agriculture Press, 2000:106-107. [鲍士旦. 土壤农化分析 [M]. 3版. 北京:中国农业出版社, 2000:106-107.]
    [11] Zhou X R, Zhang L P, Jiang P, et al. Dynamics of dry matter and nitrogen, phosphorus, and potassium accumulation and nutrient requirements in the growing period of Lyceum bararum in Ningxia[J]. Soil and Fertilizer Sciences in China, 2021(1):262-272. [周喜荣, 张丽萍, 蒋鹏, 等. 宁夏枸杞生育期干物质与氮磷钾积累动态和养分需求规律[J].中国土壤与肥料, 2021(1):262-272.]
    [12] Fang D, Zhu M Z, Wei M Y, et al. Mechanisms in plant growth promotion by novel bio-organic fertilizer containing sorbitol[J]. Acta Pedologica Sinica, 2022, 59(6):1606-1615. [方丹, 朱明珠, 魏梦玉, 等. 含山梨醇的新型生物有机肥促生效应与机理研究[J]. 土壤学报, 2022, 59(6):1606-1615.]
    [13] Ding S S, Li Y T, Yuan L, et al. Effects of sugar alcohols and amino acids on growth, quality and calcium nutrition of Chinese cabbage[J]. Journal of Plant Nutrition and Fertilizers, 2016, 22(3):744-751. [丁双双, 李燕婷, 袁亮, 等. 糖醇和氨基酸对小白菜钙营养及生长、品质的影响[J].植物营养与肥料学报, 2016, 22(3):744-751.]
    [14] Lei J, Hao Y S, Wang X L, et al. Review of nutrient physiology and metabolism in potassium efficiency of plants[J]. Soil and Fertilizer Sciences in China, 2014(1):1-5. [雷晶, 郝艳淑, 王晓丽, 等. 植物钾效率差异的营养生理及代谢机制研究进展[J]. 中国土壤与肥料, 2014(1):1-5.]
    [15] Lu Y, Wang C X, Yu T Y, et al. Effects of interaction of phosphorus(P)application in soil and leaves on root, nodule characteristics and nitrogen(N)metabolism in peanut[J]. Acta Agronomica Sinica, 2020, 46(3):432-439. [路亚, 王春晓, 于天一, 等. 土壤施磷与叶面追肥互作对花生根系形态、结瘤特性及氮代谢的影响[J]. 作物学报, 2020, 46(3):432-439.]
    [16] Hu W Z, Wang Q, Miao H Y, et al. Effect of basal and foliar applications of potassium fertilizer on flue-cured tobacco leaves[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2010, 19(9):119-123. [胡文智, 王晴, 苗慧莹, 等. 钾肥基施与叶面喷施对烤烟含钾量的影响[J]. 西北农业学报, 2010, 19(9):119-123.]
    [17] Yan P K, Yu R, Wang D Q, et al. Annual dynamic change of N, P and K contents as well as fertilizer requirement of jujube trees(Zizyphus jujuba‘Tongxinyuanzao’)in Ningxia[J]. Journal of Fruit Science, 2020, 37(1):77-87. [闫鹏科, 于茹, 王丹青, 等. ‘同心圆枣’树氮、磷、钾含量及需肥规律年动态变化[J]. 果树学报, 2020, 37(1):77-87.]
    [18] Li J, Zhang X Z, Li T X, et al. Effect of potash management on potassium absorption and utilization of flue cured tobacco[J]. Journal of Plant Nutrition and Fertilizers, 2015, 21(4):969-978. [李静, 张锡洲, 李廷轩, 等. 钾肥运筹对烤烟钾吸收利用的影响[J]. 植物营养与肥料学报, 2015, 21(4):969-978.]
    [19] Sugiyama A, Ueda Y, Zushi T, et al. Changes in the bacterial community of soybean rhizosphere during growth in the field[J]. PLoS One, 2014, 9(6):e100709.
    [20] Chen H, Tang H Y, Guo J H, et al. Root exudates’ roles and analytical techniques progress[J]. Soils, 2023, 55(2):225-233. [陈虹, 唐昊冶, 郭家欢, 等. 根系分泌物主要作用及解析技术进展[J]. 土壤, 2023, 55(2):225-233.]
    [21] Liu J G, Li X G, Wang X X. Effects of successive application of organic fertilizers on rhizosphere microbial populations and enzyme activities of monoculture peanut[J]. Soils, 2018, 50(2):305-311. [刘金光, 李孝刚, 王兴祥. 连续施用有机肥对连作花生根际微生物种群和酶活性的影响[J].土壤, 2018, 50(2):305-311.]
    [22] Ali N, Sorkhoh N, Salamah S, et al. The potential of epiphytic hydrocarbon-utilizing bacteria on legume leaves for attenuation of atmospheric hydrocarbon pollutants[J]. Journal of Environmental Management, 2012, 93(1):113-120.
    [23] Pii Y, Mimmo T, Tomasi N, et al. Microbial interactions in the rhizosphere:Beneficial influences of plant growth-promoting rhizobacteria on nutrient acquisition process. A review[J]. Biology and Fertility of Soils, 2015, 51(4):403-415.
    [24] Ling N, Deng K Y, Song Y, et al. Variation of rhizosphere bacterial community in watermelon continuous mono-cropping soil by long-term application of a novel bioorganic fertilizer[J]. Microbiological Research, 2014, 169(7/8):570-578.
    [25] Feng M, Xiang S D, Huang X J, et al. Effects of foliar iron fertilizer on growth, soil nutrients and microbial diversity of cabbage in Karst area[J]. Soil and Fertilizer Sciences in China, 2020(5):220-226. [冯密, 向书迪, 黄雪娇, 等. 叶面补铁对喀斯特土壤小白菜生长、土壤养分及微生物的影响[J]. 中国土壤与肥料, 2020(5):220-226.]
    [26] Chaparro J M, Badri D V, Vivanco J M. Rhizosphere microbiome assemblage is affected by plant development[J]. The ISME Journal, 2014, 8(4):790-803.
    [27] Sui P X, Lian H L, Wang Z Y, et al. Effects of rotary tillage and straw incorporation on microbial community of brown soil[J]. Chinese Journal of Ecology, 2023, 42(9):2049-2060. [隋鹏祥, 廉宏利, 王峥宇, 等.旋耕和秸秆还田方式对棕壤微生物群落特征的影响[J]. 生态学杂志, 2023, 42(9):2049-2060.]
    [28] Xu M, Xian Y, Wu J, et al. Effect of biogas slurry addition on soil properties, yields, and bacterial composition in the rice-rape rotation ecosystem over 3 years[J]. Journal of Soil & Sediments, 2019, 19(5):2534-2542.
    [29] Górska E B, Stępien W, Cunha A, et al. Microbial diversity as an indicator of a diversified cropping system for luvisoils in a moderate climate. Case study-Long term experiments from Poland[J]. Ecological Indicators, 2022, 141:109-133.
    [30] Podar M, Turner J, Burdick L H, et al. Complete genome sequence of the novel Roseimicrobium sp. strain ORNL1, a Verrucomicrobium isolated from the Populus deltoides rhizosphere[J]. Microbiology Resource Announcements, 2020, 9(27):e00617-20.
    [31] Song H J, Peng L, Li Z Y, et al. Metal distribution and biological diversity of crusts in paddy fields polluted with different levels of cadmium[J]. Ecotoxicology and Environmental Safety, 2019, 184:109620.
    [32] Deng Y X, Wang W L, Zhou S M, et al. Relationships of potassium-releasing rhizosphere microorganisms with soil potassium content, potassium use efficiency and root vigor in wheat(Triticum aestivum L.)[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(6):1027-1043. [邓永兴, 王文亮, 周苏玫, 等. 小麦根际解钾微生物与土壤钾含量、钾素利用率及根系活力的关系[J]. 植物营养与肥料学报, 2021, 27(6):1027-1043.]
    [33] Zeng Y H, Feng F Y, Medová H, et al. Functional type 2 photosynthetic reaction centers found in the rare bacterial phylum Gemmatimonadetes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(21):7795-7800.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

孙伟,张欢洋,魏倩倩,曾凡鹤,李腾升,赵立,韩传浩,张静,张子琪,石祥,颜冬云.叶面喷施山梨醇螯合钾对花生产量及根际土壤微生物群落的影响[J].土壤学报,2024,61(4):1099-1110. DOI:10.11766/trxb202301030003 SUN Wei, ZHANG Huanyang, WEI Qianqian, ZENG Fanhe, LI Tengsheng, ZHAO Li, HAN Chuanhao, ZHANG Jing, ZHANG Ziqi, SHI Xiang, YAN Dongyun. Effects of Foliar Spraying of Sorbitol Chelated Potassium on Peanut Yield and Rhizosphere Soil Microbial Community[J]. Acta Pedologica Sinica,2024,61(4):1099-1110.

复制
分享
文章指标
  • 点击次数:372
  • 下载次数: 1335
  • HTML阅读次数: 774
  • 引用次数: 0
历史
  • 收稿日期:2023-01-03
  • 最后修改日期:2023-08-15
  • 录用日期:2023-11-01
  • 在线发布日期: 2023-11-13
  • 出版日期: 2024-07-15
文章二维码