温度和砷对不同品种水稻幼苗生长和砷吸收的影响
作者:
中图分类号:

S511;X171.5

基金项目:

江苏省林业科技创新与推广项目(LYKJ[2019]08)和江苏省农业气象重点实验室开放基金项目共同资助


Effects of Temperature and Arsenic on Growth and Arsenic Uptake of Different Rice Varieties during Seedlings Stage
Author:
Fund Project:

Supported by the Innovation and Promotion Project of Forestry Science and Technology of Jiangsu Province, China (No. LYKJ[2019]08 ) and the Open Foundation of Jiangsu Key Laboratory of Agricultural Meteorology, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [36]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为明确温度和外源砷对水稻生长发育的影响,选取江苏地区常见的8个水稻品种为试验材料,通过添加不同浓度外源砷[0(As0)、0.5(As0.5)和1 mg·L-1(As1)]和模拟不同温度[白天/夜晚分别为30℃/25℃(T0)和35℃/30℃(T1)],在人工气候箱内进行了发芽和苗期培养试验,并分析了8个品种水稻种子萌发、幼苗生长及砷含量状况。结果表明,外源砷对水稻的芽长和活力指数具有抑制作用,与对照(T0As0)相比,T0As1处理使不同品种水稻的芽长和活力指数分别降低13.69%~43.34%和28.14%~52.88%。 而温度对水稻种子萌发的影响与水稻品种有关。在T1处理下,盐两优1618的发芽率、芽长和活力指数均优于其他品种。温度和外源砷的共同作用显著降低了不同品种水稻的芽长(P<0.05)。与T0As0相比,T1As1使水稻芽长显著降低5.66%~43.34%。水稻根长和根系活力显著受到温度和外源砷的单一因素的影响。与T0As0相比,T0As1处理使水稻根系活力降低3.01%~58.21%。温度和外源砷的共同作用抑制了水稻根长和根系活力,其中T1As1使水稻根系活力显著降低53.80%~89.01%。不同品种水稻的苗高和根系活力在相同温度或外源砷处理下具有显著差异(P<0.05),其中盐两优888的苗高和根系活力均处于较高水平。水稻茎叶砷含量在外源砷处理下显著增加,在增温处理下却降低。与单一的砷处理相比,温度和外源砷的共同作用降低了水稻茎叶的砷含量。综上可知,温度和外源砷影响水稻的生长及砷吸收,但水稻生长状况具有明显的品种间差异,其中盐两优888和盐两优1618在增温和外源砷共存条件下的种子萌发和生长状况优于其他水稻品种。

    Abstract:

    Temperature and exogenous arsenic are important factors affecting rice growth. Due to climate warming, rice growth is affected by a combination of temperature and arsenic in rice fields contaminated by arsenic. Clarifying the combination can provide a theoretical basis for rice management and safety production.【Method】Germination and culture experiments were carried out in the artificial climate chamber under the condition of different exogenous arsenic concentrations [0(As0), 0.5(As0.5) and 1(As1) mg`L-1] and different temperature simulations [daytime/nighttime 30℃/25℃(T0) and 35℃/30 ℃(T1)] using eight common rice varieties in Jiangsu Province. Seed germination, seedling growth and arsenic uptake of different rice varieties were analysed. 【Result】The results showed that exogenous arsenic inhibited sprout length and vigor index of rice. Compared with T0As0, T0As1 reduced the sprout length and vigor index of different rice varieties by 13.69%-43.34% and 28.14%-52.88%, respectively, and the effect of temperature on rice seed germination was related to rice varieties. Under the condition of T1 treatment, the germination rate, sprout length and vigor index of Yanliangyou 1618 were better than those of other varieties. The interaction of temperature and exogenous arsenic significantly decreased the sprout length (P < 0.05). Compared with T0As0, T1As1 decreased sprout length by 5.66%-43.34%. Also, single temperature or exogenous arsenic had a significant effect on rice root length and root vigor. Compared with T0As0, T0As1 reduced root vigor by 3.01%-58.21%. The interaction of temperature and exogenous arsenic inhibited rice root length and root vigor. Compared with T0As0, T1As1 significantly reduced root vigor of different rice varieties by 53.80%-89.01%. The seedling height and root vigor of different rice varieties had significant differences (P < 0.05) under the same treatment of temperature or exogenous arsenic, among which the seedling height and root vigor of Yanliangyou 888 were at higher levels. The arsenic concentration in rice stems and leaves increased significantly under exogenous arsenic while the arsenic concentration in rice stems and leaves decreased under the increase in temperature. Furthermore, compared with single arsenic treatment, arsenic concentration in rice stems and leaves decreased under the interaction of temperature and exogenous arsenic. 【Conclusion】From the above results, it can be concluded that temperature and exogenous arsenic affected rice growth and arsenic uptake. However, rice growth conditions and arsenic concentration were significantly different among rice varieties. The germination and growth of Yanliangyou 888 and Yanliangyou 1618 were better than other rice varieties under the condition of temperature and exogenous arsenic.

    参考文献
    [1] IPCC. Global warming of 1.5 ºC:An IPCC special report on the impacts of global warming of 1.5℃ above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty[M]. Cambridge:Cambridge University Press, 2018.
    [2] Yang S, Jia Y L, Shen J S, et al. Effects of high- temperature hastening germination on rice seed germination and seedling quality [J]. Barley and Cereal Sciences, 2021, 38(3):23-27.[杨松, 贾一磊, 沈进松, 等. 高温催芽技术对水稻种子发芽及秧苗素质的影响[J].大麦与谷类科学, 2021, 38(3):23-27.]
    [3] Ye S Q. Effects of high-temperature on germination rate of rice seed[J]. China Rice, 2017, 23(6):47-52.[叶世青. 高温处理对不同状态水稻种子发芽率的影响[J].中国稻米, 2017, 23(6):47-52.]
    [4] Zhang X J, Zhang S Y, Li C Q, et al. Effects of high temperature stress on growth of stress-tolerant rice seedlings with resistibility[J]. Agricultural Science& Technology, 2014, 15(4):576-578, 584.
    [5] Teng Z H, Zhi L, Zong X F, et al. Effects of high temperature on chlorophyll fluorescence, active oxygen resistance activity, and grain quality in grain-filling periods in rice plants[J]. Acta Agronomica Sinica, 2008, 34(9):1662-1666.[滕中华, 智丽, 宗学凤, 等.高温胁迫对水稻灌浆结实期叶绿素荧光、抗活性氧活力和稻米品质的影响[J]. 作物学报, 2008, 34(9):1662-1666.]
    [6] Xu P, He Y Z, Huang Y R, et al. Effects of short-term high temperature on spikelet opening dynamics and yield of different rice varieties during flowering period[J]. Chinese Journal of Agrometeorology, 2023, 44(1):25-35.[徐鹏, 贺一哲, 黄亚茹, 等. 花期短时高温对不同品种水稻颖花开放动态及产量的影响[J]. 中国农业气象, 2023, 44(1):25-35.]
    [7] Zhang J S, Tao Y, Song L, et al. Interannual ambient temperature shift caused varied responses of rice yield and its components to elevated CO2 and temperature[J].Soils, 2022, 54(2):262-269.[张继双, 陶冶, 宋练, 等. 年际环境温度变化驱动水稻产量及其构成对CO2浓度和温度升高的响应差异[J]. 土壤, 2022, 54(2):262-269.]
    [8] Zhong S X, He H F, Chen Z L, et al. Advancement in study on biochemical behavior of arsenic in flooded paddy soil[J]. Acta Pedologica Sinica, 2018, 55(1):1-17. [钟松雄, 何宏飞, 陈志良, 等. 水淹条件下水稻土中砷的生物化学行为研究进展[J].土壤学报, 2018, 55(1):1-17.]
    [9] Williams P N, Villada A, Deacon C, et al. Greatly enhanced arsenic shoot assimilation in rice leads to elevated grain levels compared to wheat and barley[J]. Environmental Science and Technology, 2007, 41(19):6854-6859.
    [10] Abedin M J, Meharg A A. Relative toxicity of arsenite and arsenate on germination and early seedling growth of rice(Oryza sativaL.)[J]. Plant and Soil, 2002, 243:57-66.
    [11] Li R Y, Shen X H, Zhang Y H, et al. Effects of inorganic arsenic on seed germination and photosynthetic characteristics of various rice cultivars[J]. Journal of Agro-Environment Science, 2014, 33(6):1067-1074. [李仁英, 沈孝辉, 张耀鸿, 等. 无机砷对不同水稻品种种子萌发和幼苗光合生理的影响[J].农业环境科学学报, 2014, 33(6):1067-1074.]
    [12] Lian W M, Xu W, Meng Z L, et al. Effects of supplementation of epibrassinolide on alleviation of arsenic stress in rice[J]. Jiangsu Journal of Agricultural Sciences, 2018, 34(6):1267-1275.[练旺民, 徐薇, 孟卓玲, 等. 表油菜素内酯在缓解水稻砷毒害中的作用[J]. 江苏农业学报, 2018, 34(6):1267-1275.]
    [13] Wang F M, Chen Z L, Zhang L, et al. Arsenic uptake and accumulation in rice(Oryza sativa L.)at different growth stages following soil incorporation of roxarsone and arsanilic acid[J]. Plant and Soil, 2006, 285(1/2):359-367.
    [14] Feng X M. The key parts, important growth stages and related elements in Cd/As accumulation of rice[D].Beijing:Chinese Academy of Agricultural Sciences, 2017:15-16.[冯雪敏. 水稻富集镉砷的关键部位、生育时期及相关元素的研究[D].北京:中国农业科学院, 2017:15-16.
    [15] Deng D. Effects of root structure on arsenic uptake by paddy rice[D]. Shanghai:East China Normal University, 2009:25-26.[邓丹. 根系结构对水稻吸收砷的影响[D].上海:华东师范大学, 2009:25-26.]
    [16] Zhang Z L. Experimental guidance of plant physiology[M]. 4th Ed. Beijing:Higher Education Press, 2009:32-33.[张志良. 植物生理学实验指导[M].4版. 北京:高等教育出版社, 2009:32-33.]
    [17] Lu R K. Analytical methods forsoil andagrochemistry[M]. Beijing:China Agricultural Science and Technology Press, 1999. [鲁如坤. 土壤农业化学分析方法[M]. 北京:中国农业科技出版社, 1999.]
    [18] Liu W L, Qian J Y, Xu Z M, et al. Effects of temperature and betaine on rice seed germination[J/OL]. Molecular Plant Breeding, 2022. https://kns.cnki.net/kcms/detail/46.1068.s.20220328.1016.003.html.[刘文露, 钱婧雅, 徐志明, 等. 温度和甜菜碱对水稻种子萌发的影响[J/OL]. 分子植物育种, 2022. https://kns.cnki.net/kcms/detail/46.1068.s.20220328.1016.003.html.]
    [19] Wei Q Q, Sun W X, Li T S, et al. Effect of sorbitol chelated calcium on seed germination of rapeseed under NaCl stress[J]. Solis, 2022, 54(2):285-290.[魏倩倩, 孙文轩, 李腾升, 等. 山梨醇螯合钙对NaCl胁迫下油菜种子萌发的影响[J]. 土壤, 2022, 54(2):285-290.]
    [20] Zhang K Q, Feng Y Q, Wu R L, et al. Changes of germination rate of different rice varieties under high temperature and high humidity conditions[J].China Rice, 2011, 17(6):49-52. [张克勤, 冯玉强, 吴荣梁, 等. 不同水稻品种种子在高温高湿条件下的发芽率变化[J].中国稻米, 2011, 17(6):49-52.]
    [21] Mo X, Yue X L, Tang C B, et al. Effect of 2, 4-dichlorophenoxyacetic acid on the germination characteristics of rice seeds at different temperatures[J]. Molecular Plant Breeding, 2022. https://kns.cnki.net/kcms/detail/46.1068.s.20220420.2103.026.html. [莫旭, 岳晓磊, 唐才宝, 等. 2, 4-二氯苯氧乙酸和温度对水稻种子萌发特性的影响[J].分子植物育种, 2022. https://kns.cnki.net/kcms/detail/46.1068.s.20220420.2103.026.html.]
    [22] Fang Q, Yan S W, Cui C Y, et al. Effects of copper oxide nanoparticles on germination and growth of rice seeds exposed to arsenic stress[J]. Journal of Anhui Agricultural University, 2020, 47(5):826-831. [方清, 晏士玮, 崔彩云, 等. 纳米氧化铜对砷胁迫下水稻种子发芽及幼苗生长的影响[J]. 安徽农业大学学报, 2020, 47(5):826-831.]
    [23] Ma Q F, Xiong J F, Li Z Q, et al. Effects of arsenic on seed germination and seedling growth in three green manure seeds[J]. Guangxi Agricultural Sciences, 2009, 40(12):1577-1581.[马琼芳, 熊俊芬, 李正强, 等.砷对三种绿肥种子萌发和幼苗生长的影响研究[J]. 广西农业科学, 2009, 40(12):1577-1581.]
    [24] Liu S J, Huang Y Z, Li Y, et al. The effects of exogenous spermidine on the cadmium and arsenic uptake and accumulation in rice[J]. Journal of Agro-Environment Science, 2020, 39(10):2172- 2180.[刘书锦, 黄益宗, 李颜, 等.外源亚精胺对水稻吸收积累镉砷的影响[J]. 农业环境科学学报, 2020, 39(10):2172-2180.]
    [25] Liu S J, Huang Y Z, Bao Q L, et al. Effects of exogenous spermidine on seed germination and As uptake and accumulation of rice under As5+ stress[J]. Environmental Science, 2020, 41(3):1505-1512.[刘书锦, 黄益宗, 保琼莉, 等. 外源亚精胺对As5 + 胁迫下水稻种子萌发和As吸收积累的影响[J]. 环境科学, 2020, 41(3):1505-1512.]
    [26] Lin X B, Zhou L J, Wang H M, et al. Accumulation of heavy metals in different varieties[J]. Environmental Science, 2018, 39(11):5198-5206.[林小兵, 周利军, 王惠明, 等. 不同水稻品种对重金属的积累特性[J]. 环境科学, 2018, 39(11):5198-5206.]
    [27] Liu Z Y, Yang J X, Chen G Z, et al. Influence of arsenic in soil on the growth of different rice(Oryza sativa L.)varieties [J]. Ecology and Environment, 2007, 16(6):1700-1704.[刘志彦, 杨俊兴, 陈桂珠, 等. 砷污染土壤对不同品种水稻生长的影响[J].生态环境, 2007, 16(6):1700-1704.]
    [28] Xiao L, Liang Q S, Wang Q H. Investigation on the effect of arsenic on wheat seed germination[J]. Journal of Northwest A & F University(Natural Science Edition), 1998, 26(6):59-63.[肖玲, 梁圈社, 王清华. 砷对小麦种子萌发影响的探讨[J].西北农林科技大学学报(自然科学版), 1998, 26(6):59-63.]
    [29] Wu C, An W H, Xue S G, et al. Arsenic biogeochemical processing in the soil-rice system[J]. Journal of Agro-Environment Science, 2019, 38(7):1429-1439. [吴川, 安文慧, 薛生国, 等. 土壤-水稻系统砷的生物地球化学过程研究进展[J]. 农业环境科学学报, 2019, 38(7):1429-1439.]
    [30] Chang S Y, Li R Y, Xie X J, et al. Effects of warming at different growth stages on rice yield and nitrogen and phosphorus contents[J]. Acta Pedologica Sinica, 2018, 55(3):754-763.[常少燕, 李仁英, 谢晓金, 等. 不同生育期增温对水稻产量及氮、磷含量的影响[J].土壤学报, 2018, 55(3):754-763.]
    [31] Li J, Zhou Z Y, Liu C, et al. Effects of elevated atmospheric CO2 concentration and warming on root morphology of different rice varieties[J]. Journal of Nanjing Agricultural University, 2023, 46(1):71-82.[李婕, 周泽源, 刘成, 等. 大气CO2浓度增加和升温对不同品种水稻根系形态的影响[J]. 南京农业大学学报, 2023, 46(1):71-82.]
    [32] Liu Q J, Sun X C, Tan Q L, et al. Effect of As on the concentration of nutrient elements and root growth of winter wheat(Triticum aestivum L.)[J]. Journal of Anhui Agricultural Sciences, 2011, 39(32):19695-19697.[刘全吉, 孙学成, 谭启玲, 等. 砷对冬小麦根系生长和养分吸收的影响[J].安徽农业科学, 2011, 39(32):19695-19697.]
    [33] Muehe E M, Wang T M, Kerl C F, et al. Rice production threatened by coupled stresses of climate and soil arsenic[J]. Nature Communications, 2019, 10(1):4985.
    [34] Arao T, Makino T, Kawasaki A, et al. Effect of air temperature after heading of rice on the arsenic concentration of grain[J]. Soil Science and Plant Nutrition, 2018, 64(3):433-437.
    [35] Hu Y, Huang Y Z, Liu Y X. Genotypic differences in iron plaque formation on root surface and their effect on arsenic uptake and translocation in rice(Oryza sativa L.)grown in arsenic contaminated soil[J]. Asian Journal of Ecotoxicology, 2013, 8(6):923-930.[胡莹, 黄益宗, 刘云霞. 砷污染土壤中不同基因型水稻根表铁膜的形成及其对砷吸收和转运影响[J]. 生态毒理学报, 2013, 8(6):923-930.]
    [36] Li R Y, Zhou Z G, Xu X H, et al. Effects of silicon application on uptake of arsenic and phosphorus and formation of iron plaque in rice seedlings grown in an arsenic-contaminated soil[J]. Bulletin of Environmental Contamination and Toxicology, 2019, 103:133-139.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

翟伊然,李仁英,张婍,祁梦如,卢炳浩,黄利东,徐向华.温度和砷对不同品种水稻幼苗生长和砷吸收的影响[J].土壤学报,2024,61(4):1156-1165. DOI:10.11766/trxb202302120058 ZHAI Yiran, LI Renying, ZHANG Qi, QI Mengru, LU Binghao, HUANG Lidong, XU Xianghua. Effects of Temperature and Arsenic on Growth and Arsenic Uptake of Different Rice Varieties during Seedlings Stage[J]. Acta Pedologica Sinica,2024,61(4):1156-1165.

复制
分享
文章指标
  • 点击次数:182
  • 下载次数: 1286
  • HTML阅读次数: 616
  • 引用次数: 0
历史
  • 收稿日期:2023-02-12
  • 最后修改日期:2023-04-05
  • 录用日期:2023-05-08
  • 在线发布日期: 2023-05-09
  • 出版日期: 2024-07-15
文章二维码