水稻土好氧甲烷氧化菌对大气CO2浓度升高的适应规律
作者:
中图分类号:

Q938;S154.36

基金项目:

国家自然科学基金项目(92251305)资助


The Adaptative Mechanisms of Methane-Oxidizing Bacteria for Elevated Atmospheric CO2 in Paddy Soil
Author:
Fund Project:

The National Natural Science Foundation of China (92251305)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [39]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    CH4是仅次于CO2的第二大温室气体,而稻田是CH4的主要排放源,但未来大气CO2浓度升高情景下(elevated CO2,eCO2),水稻土好氧甲烷氧化过程及其功能微生物群落适应规律尚不清楚。依托中国FACE(Free Air CO2 Enrichment)水稻田试验平台,通过13C-CH4示踪的室内微宇宙培养实验,采用稳定性同位素核酸探针(DNA-SIP)和高通量测序技术,研究未来大气CO2浓度升高对水稻土甲烷氧化活性及其功能微生物的影响规律。结果表明:与常规大气CO2浓度(ambient CO2,aCO2)相比,eCO2条件下的甲烷氧化活性显著增加,从243 nnmol·g–1 d.w.s·h–1增加至302 nmol·g–1d.w.s·h–1,增幅高达24.3%,甲烷氧化菌数量则增加了1.1倍~ 1.2倍。通过超高速离心获得活性甲烷氧化菌同化13CH4后合成的13C-DNA,高通量测序发现,未来大气CO2升高情景下水稻土活性好氧甲烷氧化微生物群落极可能发生明显演替,与对照相比,类型I甲烷氧化菌甲基杆菌属Methylobacter的相对丰度增加16.2%~17.0%,而甲基八叠球菌属Methylosarcina的相对丰度下降4.7%~11.1%;同时刺激了食酸菌属Acidovorax和假单胞菌属Pseudomonas等非甲烷氧化菌的活性。综上所述:未来大气CO2升高情景下,水稻土好氧甲烷氧化微生物群落结构发生分异,促进了甲烷氧化通量,而甲烷氧化的代谢产物可能引发土壤中微生物食物网的级联反应,是土壤碳储存和周转的重要功能微生物群。

    Abstract:

    【Objective】CH4 is the second most potent greenhouse gas only next to CO2. Continued CH4 and CO2 emissions by human activities pose a major challenge to the mitigation of global climate change. Rice paddy, a main form of artificial wetland, accounts for~8% of anthropogenic sources of CH4. The elevated atmospheric CO2(eCO2) affect the cycling of nutrients and elements in paddy fields mainly through the changes in plant-soil-microbe interactions, which also influence net CH4 flux associated with both the methanogenic and methanotrophic processes. However, how eCO2 affects aerobic methane oxidation in paddy soils has rarely been examined, and the adaptative mechanisms of active methane-oxidizing bacteria(MOB)for eCO2 remain unclear. This study aimed to explore the changes in methane-oxidizing rates and identify the active MOB phylotypes in paddy soil under the eCO2 treatment.【Method】We collected paddy soil samples from China’s FACE(Free Air CO2 Enrichment)experiment station, with FACE treatment and ambient CO2 concentration treatment (aCO2). The CH4-feeding microcosm incubation was applied to learn the methane-oxidizing rates in the two soils. DNA-based stable isotope probing (DNA-SIP) combined with quantitative polymerase chain reaction (qPCR) of methane-oxidizing functional gene pmoA was used to identify the 13C-labeled DNA. High-throughput sequencing and phylogenetic analysis for the 16S rRNA gene amplicons of the 13C-DNA were used to identify the active microbiomes during methane oxidation.【Result】The results showed that eCO2 significantly stimulated aerobic methane-oxidizing rate when compared to the ambient CO2 treatment, with 302 and 243 nmol CH4·g–1 d.w.s·h–1, respectively. The abundance of MOB increased by 1.1 folds -1.2 folds under eCO2. A group of MOB assimilated 13CH4 and synthesized 13C-DNA, which were separated into heavy fractions during DNA-SIP. The result of high-throughput sequencing for 13C-DNA showed that Methylobacter and Methylosarcina predominated the active MOB phylotypes. The relative abundance of Methylobacter increased by 16.2%-17.0% while the relative abundance of Methylosarcina decreased under eCO2. eCO2 also stimulated the activity of non-methanotrophic bacteria, such as Acidovorax and Pseudomonas, which implies a methanotrophy-induced microbial community response to eCO2.【Conclusion】This study reveals positive effects of elevated atmospheric CO2 on aerobic methane oxidation in paddy soil, with the predominant and active MOB of Methylobacter playing crucial roles, indicating an improved potential of methane oxidation under the scenarios of global climate change.

    参考文献
    [1] WMO. Greenhouse gas bulletin-No.15:The state of greenhouse gases in the atmosphere based on global observations through 2018[R] . WMO Greenhouse Gas Bulletin, Switzerland, 2019. https://library.wmo.int/doc_num.php?explnum_id=10100.
    [2] IPCC. Climate change 2014:Synthesis report. Pachauri R K, Meyer L A. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[R]. Geneva, Switzerland:IPCC, 2014, 151.
    [3] Saunois M, Stavert A R, Poulter B, et al. The global methane budget 2000-2017[J]. Earth System Science Data, 2020, 12(3):1561-1623.
    [4] Conrad R. Importance of hydrogenotrophic, aceticlastic and methylotrophic methanogenesis for methane production in terrestrial, aquatic and other anoxic environments:A mini review[J]. Pedosphere, 2020, 30(1):25-39.
    [5] Dedysh S N, Knief C, Dunfield P F. Methylocella species are facultatively methanotrophic[J]. Journal of Bacteriology, 2005, 187(13):4665-4670.
    [6] Hanson R S, Hanson T E. Methanotrophic bacteria[J]. Microbiological Reviews, 1996, 60(2):439-471.
    [7] Stein L Y. The long-term relationship between microbial metabolism and greenhouse gases[J]. Trends in Microbiology, 2020, 28(6):500-511.
    [8] Knief C. Diversity and habitat preferences of cultivated and uncultivated aerobic methanotrophic bacteria evaluated based on pmoA as molecular marker[J]. Frontiers in Microbiology, 2015, 6:1346.
    [9] Murrell J C, McDonald I R, Bourne D G. Molecular methods for the study of methanotroph ecology[J]. FEMS Microbiology Ecology, 1998, 27(2):103-114.
    [10] McDonald I R, Bodrossy L, Chen Y, et al. Molecular ecology techniques for the study of aerobic methanotrophs[J]. Applied and Environmental Microbiology, 2008, 74(5):1305-1315.
    [11] Costello A M, Lidstrom M E. Molecular characterization of functional and phylogenetic genes from natural populations of methanotrophs in lake sediments[J]. Applied and Environmental Microbiology, 1999, 65(11):5066-5074.
    [12] van Groenigen K J, Osenberg C W, Hungate B A. Increased soil emissions of potent greenhouse gases under increased atmospheric CO2[J]. Nature, 2011, 475(7355):214-216.
    [13] Liu S W, Ji C, Wang C, et al. Climatic role of terrestrial ecosystem under elevated CO2:A bottom-up greenhouse gases budget[J]. Ecology Letters, 2018, 21(7):1108-1118.
    [14] Qian H Y, Jin Y G, Chen J, et al. Acclimation of CH4 emissions from paddy soil to atmospheric CO2 enrichment in a growth chamber experiment[J]. The Crop Journal, 2022, 10(1):140-146.
    [15] Yu H Y, Zhang G B, Xia L L, et al. Elevated CO2 does not necessarily enhance greenhouse gas emissions from rice paddies[J]. Science of the Total Environment, 2022, 810:152363.
    [16] Schrope M K, Chanton J P, Allen L H, et al. Effect of CO2 enrichment and elevated temperature on methane emissions from rice, Oryza sativa[J]. Global Change Biology, 1999, 5(5):587-599.
    [17] Yue J, Shi Y, Zheng X H, et al. The influence of free-air CO2 enrichment on microorganisms of a paddy soil in the rice-growing season[J]. Applied Soil Ecology, 2007, 35(1):154-162.
    [18] Wang S Y, Han L, Shi Y, et al. Effects of FACE on population and activities of methanogen and methanotroph in paddy soil[J]. Soils, 2006, 38(6):768-773. [王殳屹, 韩琳, 史奕, 等. FACE对水稻土产甲烷菌和甲烷氧化菌种群及其活性的影响[J].土壤, 2006, 38(6):768-773.]
    [19] Yan C, Xu J, Zhong W H, et al. Effect of elevated CO2 on methanotrophs in the rhizosphere of rice plant[J]. Acta Ecologica Sinica, 2013, 33(6):1881-1888. [严陈, 许静, 钟文辉, 等. 大气CO2浓度升高对稻田根际土壤甲烷氧化细菌丰度的影响[J]. 生态学报, 2013, 33(6):1881-1888.]
    [20] Qian H Y, Chen J, Zhu X C, et al. Intermittent flooding lowers the impact of elevated atmospheric CO2 on CH4 emissions from rice paddies[J]. Agriculture, Ecosystems & Environment, 2022, 329:107872.
    [21] Qian H Y, Huang S, Chen J, et al. Lower-than-expected CH4 emissions from rice paddies with rising CO2 concentrations[J]. Global Change Biology, 2020, 26(4):2368-2376.
    [22] Liu X, Shen L D, Yang W T, et al. Effect of elevated atmospheric CO2 concentration on the activity, abundance and community composition of aerobic methanotrophs in paddy soils[J]. Applied Soil Ecology, 2022, 170:104301.
    [23] Liu J M, Han J J, Zhu C W, et al. Elevated atmospheric CO2 and nitrogen fertilization affect the abundance and community structure of rice root-associated nitrogen-fixing bacteria[J]. Frontiers in Microbiology, 2021, 12:628108.
    [24] Liu G, Han Y, Zhu J G, et al. Rice-wheat rotational FACE platform Ⅰ. System structure and control[J]. Chinese Journal of Applied Ecology, 2002, 13(10):1253-1258. [刘钢, 韩勇, 朱建国, 等. 稻麦轮作FACE系统平台Ⅰ.系统结构与控制[J]. 应用生态学报, 2002, 13(10):1253-1258.]
    [25] Jia Z J, Conrad R. Bacteria rather than Archaea dominate microbial ammonia oxidation in an agricultural soil[J]. Environmental Microbiology, 2009, 11(7):1658-1671.
    [26] Jia Z J. Principle and application of DNA-based stable isotope probing-A review[J]. Acta Microbiologica Sinica, 2011, 51(12):1585-1594. [贾仲君. 稳定性同位素核酸探针技术DNA-SIP原理与应用[J]. 微生物学报, 2011, 51(12):1585-1594.]
    [27] Stubner S. Enumeration of 16S rDNA of Desulfotomaculum lineage 1 in rice field soil by real-time PCR with SybrGreenTM detection[J]. Journal of Microbiological Methods, 2002, 50(2):155-164.
    [28] Lee S H, Megonigal P J, Kang H. How do elevated CO2 and nitrogen addition affect functional microbial community involved in greenhouse gas flux in salt marsh system[J]. Microbial Ecology, 2017, 74(3):670-680.
    [29] Dijkstra F A, Morgan J A, Follett R F, et al. Climate change reduces the net sink of CH4 and N2O in a semiarid grassland[J]. Global Change Biology, 2013, 19(6):1816-1826.
    [30] Dubbs L L, Whalen S C. Reduced net atmospheric CH4 consumption is a sustained response to elevated CO2 in a temperate forest[J]. Biology and Fertility of Soils, 2010, 46(6):597-606.
    [31] Chen D, Yu H Y, Zou L Y, et al. Effects of elevated atmospheric CO2 concentration on the stability of soil organic carbon in different layers of a paddy soil[J]. Chinese Journal of Applied Ecology, 2018, 29(8):2559-2565. [陈栋, 郁红艳, 邹路易, 等. 大气CO2浓度升高对不同层次水稻土有机碳稳定性的影响[J]. 应用生态学报, 2018, 29(8):2559-2565.]
    [32] Hu Z K, Chen X Y, Yao J N, et al. Plant-mediated effects of elevated CO2 and rice cultivars on soil carbon dynamics in a paddy soil[J]. New Phytologist, 2020, 225(6):2368-2379.
    [33] Ma H L, Zhu J G, Xie Z B, et al. Effect of FACE(free air carbon-dioxide enrichment)on soluble C, N and P in soil during rice growing[J]. Soils, 2004, 36(4):392-397. [马红亮, 朱建国, 谢祖彬, 等. 开放式空气CO2浓度升高对水稻土壤可溶性C、N和P的影响[J]. 土壤, 2004, 36(4):392-397.]
    [34] Wang X Z, Zhang H J, Sun W, et al. Effect of elevated atmospheric CO2 on paddy soil nitrogen content during rice season[J]. Chinese Journal of Applied Ecology, 2010, 21(8):2161-2165. [王小治, 张海进, 孙伟, 等. 大气CO2浓度升高对稻田土壤氮素的影响[J] . 应用生态学报, 2010, 21(8):2161-2165.]
    [35] Ren S R, Zhu J G, Li H X, et al. Effect of free-air CO2 enrichment(FACE)on microelements in paddy soil[J]. Ecology and Environment, 2007, 16(3):982-986. [任思荣, 朱建国, 李辉信, 等. 大气CO2浓度升高对稻田土壤中微量元素的影响[J]. 生态环境, 2007, 16(3):982-986.]
    [36] Lee J, Oh Y, Lee S T, et al. Soil organic carbon is a key determinant of CH4 sink in global forest soils[J]. Nature Communications, 2023, 14(1):3110.
    [37] Ho A, Kerckhof F M, Luke C, et al. Conceptualizing functional traits and ecological characteristics of methane-oxidizing bacteria as life strategies[J]. Environmental Microbiology Reports, 2013, 5(3):335-345.
    [38] Kalyuzhnaya M G, Stolyar S M, Auman A J, et al. Methylosarcina lacus sp. nov., a methanotroph from Lake Washington, Seattle, USA, and emended description of the genus Methylosarcina[J]. International Journal of Systematic and Evolutionary Microbiology, 2005, 55(6):2345-2350.
    [39] Oshkin I Y, Beck D A, Lamb A E, et al. Methane-fed microbial microcosms show differential community dynamics and pinpoint taxa involved in communal response[J]. The ISME Journal, 2015, 9(5):1119-1129.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

曹伟伟,严陈,钟文辉,朱春梧,朱建国,贾仲君.水稻土好氧甲烷氧化菌对大气CO2浓度升高的适应规律[J].土壤学报,2024,61(4):1055-1065. DOI:10.11766/trxb202302160061 CAO Weiwei, YAN Chen, ZHONG Wenhui, ZHU Chunwu, ZHU Jianguo, JIA Zhongjun. The Adaptative Mechanisms of Methane-Oxidizing Bacteria for Elevated Atmospheric CO2 in Paddy Soil[J]. Acta Pedologica Sinica,2024,61(4):1055-1065.

复制
分享
文章指标
  • 点击次数:276
  • 下载次数: 2440
  • HTML阅读次数: 1790
  • 引用次数: 0
历史
  • 收稿日期:2023-02-16
  • 最后修改日期:2023-06-18
  • 录用日期:2023-10-13
  • 在线发布日期: 2023-10-20
  • 出版日期: 2024-07-15
文章二维码