大气CO2浓度升高和温升对水稻纹枯病侵染后的相关蛋白和防御酶的影响
作者:
中图分类号:

S435.111

基金项目:

国家自然科学基金项目(31870423)、广东省科技厅重点项目(2020B0202010006)和南京市科技局碳中和碳达峰科技专项(20221103)共同资助


Effects of Free-air CO2 Enrichment and Temperature Increase on Related Proteins and Defense Enzymes in Plants Infected with Rice Sheath Blight
Author:
Fund Project:

Supported by the National Natural Science Foundation of China (No. 31870423), the Key-Area Research and Development Program of Guangdong Province, China (No. 2020B0202010006), and the Carbon Peaking and Carbon Neutrality Special Fund for Science and Technology from Nanjing Science and Technology Bureau (No. 20221103)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [23]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    纹枯病(sheath blight)作为一种土传病害,其发生和发展严重威胁到水稻(Oryza sativa L.)的生产。目前,大气CO2浓度([CO2])和温度升高如何影响感病植株内病程相关蛋白(pathogenesis related proteins,PR蛋白)和防御酶尚不清楚。本研究以纹枯病易感品种(Lemont)和抗性品种(YSBR1)为实验材料,利用田间开放式自由大气[CO2]和温度升高(T-FACE)平台设置四个处理:对照、[CO2]升高([CO2]升高至590 μmol·mol–1)、温升(冠层温度升高2℃)及[CO2]升高和温升交互,通过人工接种R. solani,探究不同抗性品种叶片和茎鞘PR蛋白与防御酶活性,以及土壤基本理化性状的响应。研究结果表明:高[CO2]和温升下耕作土制成的土壤浸提液培养基中R. solani生长速率无显著差异,接种R. solani后病斑发展速率与土壤基本理化性状无关。水稻植株感病后,两个品种叶片和茎鞘中PR蛋白和相关防御酶表现出明显差异,且在高[CO2]和温升条件下,该差异进一步增大。对于茎鞘中的PR蛋白和防御酶,高[CO2]和温升交互处理明显增加Lemont和YSBR1茎鞘中过氧化氢酶(CAT)、苯丙氨酸解氨酶(PAL)、β-1,3-葡聚糖酶(GLU)和超氧化物歧化酶(SOD)活性。对于两个水稻品种,当R. solani入侵后,在各处理下,YSBR1叶片中PR蛋白和相关防御酶以及茎鞘中SOD和CAT活性均显著高于Lemont,且YSBR1病斑发展速率显著低于Lemont。在整个发病过程中,温升处理及其与高[CO2]互作处理均显著增加易感品种Lemont的病斑发展速率(增加了21% ~ 45%),而对抗性品种YSBR1的病斑发展速率无显著影响。相关性分析结果表明,各处理下Lemont和YSBR1植株纹枯病病斑的发展速率均与其茎鞘中GLU活性存在显著正相关。因而,在R. solani侵染后,抗病品种中较高的PR蛋白和防御酶活性形成的防卫反应,能够有效减轻未来高[CO2]和温升条件对纹枯病病斑发展速度的影响。研究结果对选育纹枯病抗性品种来适应未来气候变化背景下的水稻生产提供重要的借鉴意义。

    Abstract:

    【Objective】Sheath blight (ShB) is a soil-borne disease, whose occurrence and development seriously threatens rice (Oryza sativa L.) production. However, it is still unclear how elevated CO2 concentration ([CO2]) and temperature affect pathogenesis-related proteins (PR proteins) and defense enzymes in plants infected with Rhizoctonia solani.【Method】In this study, temperature by free-air CO2 enrichment(T-FACE) system was used with four treatments: ambient condition; elevated [CO2]([CO2] up to 590 μmol·mol–1); elevated temperature (temperature increased 2℃); the combination of elevated [CO2] and elevated temperature. Two cultivars(a susceptible variety, Lemont and a resistant variety, YSBR1) were planted to explore the response of PR proteins and defense enzymes activities in leaves and stems for two cultivars by artificial inoculation of R. solani, as well as basic physical and chemical properties of soil.【Result】Results indicated that there was no significant difference in the growth rate of R. solani on soil extract medium, which was made by bulk soil under elevated [CO2] and temperature. After inoculation with R. solani, the development rate of the ShB lesion was not related to the basic physical and chemical properties of soil. The combination of elevated [CO2] and elevated temperature induced different effects on PR proteins and defense enzymes activities in the leaves of two cultivars. For the PR proteins and defense enzymes in stems, the combination of elevated [CO2] and elevated temperature obviously increased the catalase (CAT), phenylalanine ammonia-lyase (PAL), β-1, 3-glucanase (GLU) or superoxide dismutase (SOD) activities for both Lemont and YSBR1. For different cultivars, after being infected with R. solani, the activities of PR proteins and defense enzymes in the leaves and SOD and CAT in the stems for YSBR1 were significantly higher than those for Lemont under different treatments, and the development rate of ShB lesion for YSBR1 was significantly lower than that for Lemont. During the whole disease infection, elevated [CO2] and the combination of elevated [CO2] and elevated temperature both significantly increased the development rate of rice ShB for Lemont by 21%-45%, but not for YSBR1. The correlation analysis showed that under different [CO2] and temperature treatments, the development rate of ShB was significantly positively correlated with GLU activity in stems for Lemont and YSBR1.【Conclusion】After inoculated R.solani, the defense reaction formed by PR proteins and defense enzymes in resistant cultivar can effectively reduce the effect of elevated [CO2] and temperature on the development rate of ShB in the future. This study can provide applications for breeding ShB-resistant cultivars to ensure global rice production under future climate change.

    参考文献
    [1] Senapati M, Tiwari A, Sharma N, et al. Rhizoctonia solani Kühn pathophysiology:Status and prospects of sheath blight disease management in rice[J]. Frontiers in Plant Science, 2022, 13:881116.
    [2] Mishra D, Rajput R S, Zaidi N W, et al. Sheath blight and drought stress management in rice(Oryza sativa) through Trichoderma spp[J]. Indian Phytopathology, 2020, 73(1):71-77.
    [3] Wu Y S, Chen Y Z, Meng X M, et al. Change of defence enzyme activity during resistant reaction to rice sheath blight[J]. Chinese Agricultural Science Bulletin, 2008, 24(5):327-330. [吴样孙, 陈一壮, 蒙信满, 等. 水稻纹枯病抗性反应中主要防御酶的活性变化[J]. 中国农学通报, 2008, 24(5):327-330.]
    [4] Zuo S M, Zhang Y M, Xue X, et al. Preliminary study on resistance mechanism of the new rice line YSBR1 to sheath blight[J]. Chinese Journal of Rice Science, 2014, 28(2):132-140. [左示敏, 张玉梅, 薛芗, 等. 水稻新种质YSBR1抗纹枯病机制的初步研究[J]. 中国水稻科学, 2014, 28(2):132-140.]
    [5] Zhou E X, Yang M, Chen Y L. The effects of soil environmental factors on the saprophytic colonization of Rhizoctonia solani[J]. Acta Phytopathologica Sinica, 2002, 32(3):214-218. [周而勋, 杨媚, 陈友林. 土壤环境因素对水稻纹枯病菌腐生定殖能力的影响[J]. 植物病理学报, 2002, 32(3):214-218.]
    [6] Zhang G L, Ding Y, Wang Q Q, et al. Effects of silicon on chitinase and β-1, 3-glucanase activities of rice infected by Rhizoctonia solani and its relation to resistance[J]. Plant Nutrition and Fertilizer Science, 2010, 16(3):598-604. [张国良, 丁原, 王清清, 等. 硅对水稻几丁质酶和β-1, 3-葡聚糖酶活性的影响及其与抗纹枯病的关系[J]. 植物营养与肥料学报, 2010, 16(3):598-604.]
    [7] Liu W G, Yuan H X, Tan S E, et al. Temporal changes of both chitinase and β-1, 3-glucanase activities in transgenic rice with extra anti-fungal genes[J]. Chinese Agricultural Science Bulletin, 2012, 28(27):5-9. [刘晚苟, 袁红旭, 谭书恩, 等. 转抗真菌基因水稻几丁质酶和β-1, 3-葡聚糖酶活性的时间变化[J]. 中国农学通报, 2012, 28(27):5-9.]
    [8] Wang H H, Lin Q Y, Xie L H, et al. The effects of three cucumber mosaic virus isolates on the defendant enzymes and cell membrane permeability in tobacco cells[J]. Acta Phytopathologica Sinica, 2001, 31(1):43-49. [王海河, 林奇英, 谢联辉, 等. 黄瓜花叶病毒三个毒株对烟草细胞内防御酶系统及细胞膜通透性的影响[J]. 植物病理学报, 2001, 31(1):43-49.]
    [9] IPCC. Summary for policymakers//Climate change 2021:The physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on climate change[M]. Cambridge:Cambridge University Press, 2021.
    [10] Shen M, Cai C, Song L, et al. Elevated CO2 and temperature under future climate change increase severity of rice sheath blight[J]. Frontiers in Plant Science, 2023, 14:1115614.
    [11] Cai C, Yin X Y, He S Q, et al. Responses of wheat and rice to factorial combinations of ambient and elevated CO2 and temperature in FACE experiments[J]. Global Change Biology, 2016, 22(2):856-874.
    [12] Tao Y, Cai C, Wei W, et al. Effects of elevated atmospheric CO2 concentration on root growth of “strong” and “weak” response rice varieties:A FACE study[J]. Soils, 2022, 54(4):763-768. [陶冶, 蔡创, 韦薇, 等. 大气CO2浓度升高对高、低响应水稻品种根系生长的影响——FACE研究[J]. 土壤, 2022, 54(4):763-768.]
    [13] Xue X, Cao Z X, Zhang X T, et al. Overexpression of OsOSM1 enhances resistance to rice sheath blight[J]. Plant Disease, 2016, 100(8):1634-1642.
    [14] Zuo S M, Chen X J, Chen H Q, et al. Defense response and physiological difference of rice cultivars with different sheath blight resistance levels to the toxins produced by Rhizoctonia solani[J]. Chinese Journal of Rice Science, 2014, 28(5):551-558. [左示敏, 陈夕军, 陈红旗, 等. 不同抗性水平水稻品种对纹枯病菌毒素的防卫反应与生理差异[J].中国水稻科学, 2014, 28(5):551-558.]
    [15] Lu R K. Analytical methods for soil and agro-chemistry[M]. Beijing:China Agricultural Science and Technology Press, 2000. [鲁如坤. 土壤农业化学分析方法[M]. 北京:中国农业科技出版社, 2000.]
    [16] He X X, Cao Q Q, Peng Z K, et al. Comparison of differences in biological characteristics of Rhizoctonia spp. isolated from three kinds of crops[J]. Journal of Huazhong Agricultural University, 2012, 31(1):55-61. [贺晓霞, 曹琦琦, 彭正凯, 等. 3种作物纹枯病菌生物学特性差异的比较[J]. 华中农业大学学报, 2012, 31(1):55-61.]
    [17] Prasad D, Singh R, Singh A. Management of sheath blight of rice with integrated nutrients[J]. Indian Phytopathology, 2010, 63(1):11-15.
    [18] Bousset L, Ermel M, Soglonou B, et al. A method to measure redox potential(Eh) and pH in agar media and plants shows that fungal growth is affected by and affects pH and Eh[J]. Fungal Biology, 2019, 123(2):117-124.
    [19] Zuo S M, Wang Z B, Chen X J, et al. Evaluation of resistance of a novel rice germplasm YSBR1 to sheath blight[J]. Acta Agronomica Sinica, 2009, 35(4):608-614. [左示敏, 王子斌, 陈夕军, 等. 水稻纹枯病改良新抗源YSBR1的抗性评价[J]. 作物学报, 2009, 35(4):608-614.]
    [20] Biswas B, Dhaliwal L, Chahal S K, et al. Effect of meteorological factors on rice sheath blight and exploratory development of a predictive model[J]. Indian Journal of Agricultural Sciences, 2011, 81(3):256-260.
    [21] Castilla N P, Leaño R M, Elazhour F A, et al. Effects of plant contact, inoculation pattern, leaf wetness regime, and nitrogen supply on inoculum efficiency in rice sheath blight[J]. Journal of Phytopathology, 1996, 144(4):187-192.
    [22] Lee F N, Rush M C. Rice sheath blight:A major rice disease[J]. Plant Disease, 1983, 67(7):829-832.
    [23] Kobayashi T, Ishiguro K, Nakajima T, et al. Effects of elevated atmospheric CO2 concentration on the infection of rice blast and sheath blight[J]. Phytopathology®, 2006, 96(4):425-431.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

沈敏,蔡创,宋练,张继双,陶冶,王东明,杨雄,韦薇,朱春梧.大气CO2浓度升高和温升对水稻纹枯病侵染后的相关蛋白和防御酶的影响[J].土壤学报,2024,61(4):1066-1076. DOI:10.11766/trxb202302220074 SHEN Min, CAI Chuang, SONG Lian, ZHANG Jishuang, TAO Ye, WANG Dongming, YANG Xiong, WEI Wei, ZHU Chunwu. Effects of Free-air CO2 Enrichment and Temperature Increase on Related Proteins and Defense Enzymes in Plants Infected with Rice Sheath Blight[J]. Acta Pedologica Sinica,2024,61(4):1066-1076.

复制
分享
文章指标
  • 点击次数:218
  • 下载次数: 1961
  • HTML阅读次数: 1479
  • 引用次数: 0
历史
  • 收稿日期:2023-02-22
  • 最后修改日期:2023-05-19
  • 录用日期:2023-07-27
  • 在线发布日期: 2023-08-08
  • 出版日期: 2024-07-15
文章二维码