长期保护性耕作下土壤团聚体全氮与氮功能微生物关系研究
作者:
基金项目:

黄土高原特色作物优质高效生产省部共建协同创新中心基金项目(SBGJXTZXKF-08)、陕西省重点研发计划-重点产业创新链(群)项目(2023-ZDLNY-03)、中央高校基本科研业务费项目(2452021112)共同资助


Study on the Relationship Between Total Nitrogen and Nitrogen Functional Microorganisms in Soil Aggregates under Long-term Conservation Tillage
Author:
Fund Project:

Provincial and Ministerial Collaborative Innovation Center for High-quality and Efficient Production of Characteristic Crops on the Loess Plateau (No. SBGJXTZXKF-08)the Key Research and Development Program of Shaanxi Province - Innovation Chain of Key Industries (Group) Project (No. 2023-ZDLNY-03), and the Basic Research Funds for Central Universities (No. 2452021112)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [33]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    长期不同的耕作措施能够显著改变农田土壤团聚体分布、微生物丰度以及全氮储量,但其之间是否存在相关性尚不清楚。依托连续10年(2009—2020)旱作长期耕作试验平台,比较传统耕作(翻耕+秸秆还田,PT)和保护性耕作(深松耕+秸秆还田,CPT;免耕+秸秆还田,ZT)下土壤团聚体氮含量的变化及其与氮功能基因(amoA-AOA、amoA-AOB、nirSnirKnosZⅠ和nosZⅡ)丰度之间的关系。结果表明,长期保护性耕作(CPT和ZT)处理显著增加了机械稳定性和水稳定性宏团聚体(>2 mm)和大团聚体(0.25~2 mm)的质量百分比,降低了微团聚体(<0.25 mm)质量百分比。与传统耕作相比,长期CPT和ZT处理0~20 cm土层的全氮含量分别提高了53.4%和49.9%,宏团聚体全氮贡献率分别提高了16.2%和21.8%,但土壤氮矿化速率、硝化潜势和反硝化潜势显著降低。通过qPCR定量发现CPT和ZT显著提高了细菌、真菌以及氮功能基因(除氨氧化细菌(amoA-AOB外))丰度;在各粒级团聚体内部,大团聚体内部真菌、nirSnosZⅠ的丰度显著高于微团聚体和宏团聚体,而nosZⅡ基因丰度则表现出相反趋势。Mantel分析结果表明,团聚体尺寸、土壤质地、矿质氮素含量、蔗糖酶活性、脲酶活性等因素是调控团聚体内部氮功能微生物丰度的关键因子。相关性分析表明,团聚体土壤全氮含量与微生物生物量氮、可溶性有机氮、细菌、真菌、amoA-AOB和nosZⅡ基因丰度呈现显著正相关关系,而与nirSnirK型反硝化基因丰度呈现显著负相关关系。综上,长期保护性耕作不仅有利于改善旱作农田土壤团聚体组分,增加全氮在团聚体土壤中的储存,还调控了细菌、真菌和氮功能微生物在团聚体内部的丰度,从而改善了旱作农田土壤氮循环的趋势,有助于提升旱作农田土壤肥力。

    Abstract:

    【Objective】 Long-term tillage practices can significantly change the distribution of soil aggregates, microbial abundance and total nitrogen storage in farmland. However, whether there is a correlation between these properties remains unclear. This study aimed to reveal the relationship between total nitrogen content and nitrogen functional microorganisms within different particle sizes aggregates under long-term conservation tillage in dry farming areas of the Loess Plateau.【Method】 Based on the 10-year (2009-2020) long-term tillage experiment (conventional tillage: plow tillage, PT; conservation tillage: chisel plow tillage, CPT and zero tillage, ZT), the effects of long-term conservation tillage on the distribution of total nitrogen and its relationship with the abundance of functional genes (amoA-AOA, amoA-AOB, nirS, nirK, nosZI and nosZII ) within aggregates in dry farmland were studied.【Result】 Long-term conservation tillage (CPT and ZT) significantly increased the mass percentage of mega-aggregates (> 2 mm ) and macro-aggregates (0.25~2 mm), while it decreased the mass percentage of micro-aggregates (< 0.25 mm). Compared with PT, long-term CPT and ZT treatments significantly decreased the soil nitrogen mineralization rate, nitrification potential, and denitrification potential but increased the total nitrogen content in the 0~20 cm soil layer by 53.4 % and 49.9 %, respectively. The total nitrogen contribution rate of macro-aggregates of CPT and ZT treatments increased by 16.2 % and 21.8 %, respectively. Using qPCR technology, it was found that CPT and ZT significantly increased the abundance of bacteria, fungi and nitrogen functional genes (except amoA-AOB); and the abundance of fungi, nirS, and nosZI in macroaggregates was significantly higher than that in microaggregates and macroaggregates, while the abundance of nosZII gene showed the opposite trend. Mantel analysis showed that aggregate size, soil texture, mineral nitrogen content, sucrase activity, and urease activity were the key factors regulating the abundance of nitrogen-functional microorganisms within aggregates. Correlation analysis showed that the total nitrogen content in aggregate soil was positively correlated with MBN, DON, and the abundance of bacteria, fungi, amoA-AOB, and nosZII genes, while negatively correlated with the abundance of nirS and nirK denitrification genes. 【Conclusion】 Long-term conservation tillage can increase soil total nitrogen storage mainly by increasing the contribution rate of nitrogen in macro-aggregates. As the abundance of bacteria, fungi, and nitrification process genes in macroaggregates increases, the abundance of nirS and nirK denitrifying microorganisms decreases, which improves the trend of the nitrogen cycle and significantly increases soil total nitrogen content.

    参考文献
    [1] Zhou J M. Protection of arable land resources and increase of soil productivity in China[J]. Bulletin of Chinese Academy of Sciences,2013,28(2):269-274+263.[周健民. 我国耕地资源保护与地力提升[J]. 中国科学院院刊,2013,28(2):269-274+263.]
    [2] Liu H M,Li R Y,Gao J J,et al. Research progress on the effects of conservation tillage on soil aggregates and microbiological characteristics[J]. Ecology and Environmental Sciences,2020,29(6):1277-1284.[刘红梅,李睿颖,高晶晶,等. 保护性耕作对土壤团聚体及微生物学特性的影响研究进展[J]. 生态环境学报,2020,29(6):1277-1284.]
    [3] Xu L Q,Li J J,Chang X,et al. The mechanism of soil nitrogen mineralization:Research progress[J]. Chinese Agricultural Science Bulletin,2022,38(34):97-101.[徐翎清,李佳佳,常晓,等. 土壤氮矿化相关机理的研究进展[J]. 中国农学通报,2022,38(34):97-101.]
    [4] He J Z,Zhang L M. Key processes and microbial mechanisms of soil nitrogen transformation[J]. Microbiology China,2013,40(1):98-108.[贺纪正,张丽梅. 土壤氮素转化的关键微生物过程及机制[J]. 微生物学通报,2013,40(1):98-108.]
    [5] Wang W Y,Hou Y T,Pan W H,et al. Continuous application of conservation tillage affects in situ N2O emissions and nitrogen cycling gene abundances following nitrogen fertilization[J]. Soil Biology & Biochemistry,2021,157:108239.
    [6] Kuypers M M M,Marchant H K,Kartal B. The microbial nitrogen-cycling network[J]. Nature Reviews Microbiology,2018,16(5):263-276.
    [7] Butterbach-Bahl K,Baggs E M,Dannenmann M,et al. Nitrous oxide emissions from soils:How well do we understand the processes and their controls?[J] Philosophical Transactions of the Royal Society B:Biological Sciences,2013,368(1621):20130122.
    [8] Gao Y,Liang A Z,Huang D D,et al. Effects of long-term no-tillage on the functional potential of microorganisms involved in the nitrogen,phosphorus and sulfur cycles of black soil[J]. Chinese Journal of Applied Ecology,2023,34(4):913-920.[高燕,梁爱珍,黄丹丹,等. 长期免耕对黑土氮磷硫循环微生物功能潜力的影响[J]. 应用生态学报,2023,34(4):913-920]
    [9] Chen J,Sinsabaugh R L. Linking microbial functional gene abundance and soil extracellular enzyme activity:Implications for soil carbon dynamics[J]. Global Change Biology,2021,27:1322-1325.
    [10] Liu Y,Li S Q,Li S X. Distribution of nitrogen pools in different sizes of Loess Plateau soil aggregates[J]. Scientia Agricultura Sinica,2007,40(2):304-313.[刘毅,李世清,李生秀. 黄土高原不同类型土壤团聚体中氮库分布的研究[J]. 中国农业科学,2007,40(2):304-313.]
    [11] Kong A Y Y,Fonte S J,van Kessel C,et al. Soil aggregates control N cycling efficiency in long-term conventional and alternative cropping systems[J]. Nutrient Cycling in Agroecosystems,2007,79:45-58.
    [12] Liao C L,Li L N,Xie L H,et al. Effect of increased or decreased application of organic manure on aggregates stability and soil cement in red paddy soil[J]. Acta Pedologica Sinica,2021,58(4):978-988.[廖超林,黎丽娜,谢丽华,等. 增减施有机肥对红壤性水稻土团聚体稳定性及胶结物的影响[J]. 土壤学报,2021,58(4):978-988.]
    [13] Bao S D. Soil and agricultural chemistry analysis[M]. 3rd ed. Beijing:China Agriculture Press,2000.[鲍士旦. 土壤农化分析[M]. 3版. 北京:中国农业出版社,2000.]
    [14] Yan X Y. Experimental methods for nitrogen cycling in soils[M]. Beijing:Science Press,2020.[颜晓元. 土壤氮循环实验研究方法[M]. 北京:科学出版社,2020.]
    [15] Su Y Z,Wang F,Zhang Z H,et al. Soil properties and soil aggregate characteristics in marginal farmlands of oasis in middle Hexi Corridor Region[J]. Scientia Agricultura Sinica,2007,40(4):741-748.[苏永中,王芳,张智慧,等. 河西走廊中段边缘绿洲农田土壤性状与团聚体特征[J]. 中国农业科学,2007,40(4):741-748.]
    [16] Li W,Dai Z,Zhang G X,et al. Combination of biochar and nitrogen fertilizer to improve soil aggregate stability and crop yield in Lou soil[J]. Journal of Plant Nutrition and Fertilizers,2019,25(5):782-791.[李伟,代镇,张光鑫,等. 生物炭和氮肥配施提高土团聚体稳定性及作物产量[J]. 植物营养与肥料学报,2019,25(5):782-791.]
    [17] Tisdall J M,Oades J M. Organic matter and water stable aggregates in soils[J]. Journal of Soil Science,1982,33(2):141-163.
    [18] Wang W Y,Yang M,Shen P F,et al. Conservation tillage reduces nitrous oxide emissions by regulating functional genes for ammonia oxidation and denitrification in a winter wheat ecosystem[J]. Soil and Tillage Research,2019,194:104347.
    [19] Six J,Elliott E T,Paustian K. Soil macroaggregate turnover and microaggregate formation:a mechanism for C sequestration under no-tillage agriculture[J]. Soil Biology & Biochemistry,2000,32:2099-2103.
    [20] Zhang S,Li Q,Zhang X,et al. Effects of conservation tillage on soil aggregation and aggregate binding agents in black soil of Northeast China[J]. Soil and Tillage Research,2012,124:196-202.
    [21] Devine S,Markewitz D,Hendrix P,et al. Soil aggregates and associated organic matter under conventional tillage,no-tillage,and forest succession after three decades[J]. PLoS One,2014,9:e84988.
    [22] Puget P,Chenu C,Balesdent J. Dynamics of soil organic matter associated with particle-size fractions of water-stable aggregates[J]. European Journal of Soil Science,2000,51:595-605.
    [23] Hati K M,Jha P,Dalal R C,et al. 50 years of continuous no-tillage,stubble retention and nitrogen fertilization enhanced macro-aggregate formation and stabilisation in a Vertisol[J]. Soil and Tillage Research,2021,214:105163.
    [24] López -Fando C,Pardo M T. Use of a partial-width tillage system maintains benefits of no-tillage in increasing total soil nitrogen[J]. Soil and Tillage Research,2012,118:32-39.
    [25] Mondal S,Chakraborty D. Soil nitrogen status can be improved through no-tillage adoption particularly in the surface soil layer:A global meta-analysis[J]. Journal of Cleaner Production,2022,366:132874.
    [26] Bohoussou Y N,Kou Y H,Yu W B,et al. Impacts of the components of conservation agriculture on soil organic carbon and total nitrogen storage:A global meta-analysis[J]. Science of the Total Environment,2022,842:156822.
    [27] Kan Z R,Ma S T,Liu Q Y,et al. Carbon sequestration and mineralization in soil aggregates under long-term conservation tillage in the North China Plain[J]. CATENA,2020,188:104428.
    [28] Xie J Y,Xu M G,Ciren Q,et al. Soil aggregation and aggregate associated organic carbon and total nitrogen under long-term contrasting soil management regimes in loess soil[J]. Journal of Integrative Agriculture,2015,14(12):2405-2416.
    [29] Trivedi P,Rochester I J,Trivedi C,et al. Soil aggregate size mediates the impacts of cropping regimes on soil carbon and microbial communities[J]. Soil Biology & Biochemistry,2015,91:169-181.
    [30] Levicnik-Hofferle S,Nicol G W,Ausec L,et al. Stimulation of thaumarchaeal ammonia oxidation by ammonia derived from organic nitrogen but not added inorganic nitrogen[J]. FEMS Microbiology Ecology,2012,80:114-123.
    [31] Jiang X,Ma Y,Yuan J,et al. Soil particle surface electrochemical property effects on abundance of ammonia-oxidizing bacteria and ammonia-oxidizing archaea,NH4+ activity,and net nitrification in an acid soil[J]. Soil Biology & Biochemistry,2011,43:2215- 2221.
    [32] Wertz S,Dandie C E,Goyer C,et al. Diversity of nirK denitrifying genes and transcripts in an agricultural soil[J]. Applied and Environmental Microbiology,2009,75:7365-7377.
    [33] Li T T,Zhang J Z,Wang X,et al. Fungal necromass contributes more to soil organic carbon and more sensitive to land use intensity than bacterial necromass[J]. Applied Soil Ecology,2022,176:104492.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王威雁,沈鹏飞,张侯平,莫非,温晓霞,廖允成.长期保护性耕作下土壤团聚体全氮与氮功能微生物关系研究[J].土壤学报,2024,61(6):1653-1667. DOI:10.11766/trxb202307120214 WANG Weiyan, SHEN Pengfei, ZHANG Houping, Mo Fei, WEN Xiaoxia, LIAO Yuncheng. Study on the Relationship Between Total Nitrogen and Nitrogen Functional Microorganisms in Soil Aggregates under Long-term Conservation Tillage[J]. Acta Pedologica Sinica,2024,61(6):1653-1667.

复制
分享
文章指标
  • 点击次数:251
  • 下载次数: 3070
  • HTML阅读次数: 1938
  • 引用次数: 0
历史
  • 收稿日期:2023-07-12
  • 最后修改日期:2023-11-03
  • 录用日期:2024-01-25
  • 在线发布日期: 2024-03-05
文章二维码