Soil Microbiome and Soil Health Assessment in Arid Regions
Fund Project:

National key research and development program of China (grant No.: 2021YFD1900500) and National Science Foundation for Excellent Young Scholars of China (grant No.: 42122050)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [134]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    土壤健康在维持粮食生产、动植物和人类健康方面具有重要作用,是实现农业可持续发展的根本。土壤微生物作为土壤中最具丰富性和多样性的有机生物体,包含细菌、真菌、原生生物和病毒。它们驱动着碳、氮、磷、硫等元素循环过程,并与植物初级生产力和土壤健康息息相关。旱区约占全球陆地表面积的41%,维系了全球约38%以上的人口。西北干旱半干旱区是我国的重要粮食生产后备区,由于其土壤生态系统的复杂性、脆弱性和敏感性导致该地区土壤健康状况相关研究仍缺乏。本文围绕微生物在土壤健康相关生态系统服务如调控作物生长、消减连作障碍、改善水体质量、维持人类健康、缓解气候变化影响和促进碳固存中的贡献,揭示了土壤微生物在维持土壤健康中的关键作用,归纳了土壤微生物作为土壤健康评价指标的发展历程和研究进展。同时介绍了旱区土壤微生物自身特征并总结其对于水分胁迫的响应,归纳了旱区土壤健康研究进展。最后对土壤微生物组与旱区土壤健康研究进行了展望,以期为利用土壤微生物资源维持和改善旱区土壤健康状况提供科学指导。

    Abstract:

    Soil health plays important roles in maintaining food production, plant, animal and human health, and is the foundation of sustainable agricultural development. Soil microorganisms are extremely complex and diverse, including archaea, bacteria, fungi, protists, and virus. They participate in a variety of ecosystem functions and services, such as primary production, nutrient cycling, decomposition, climate regulation and pathogen control, which are closely linked to global food supply and soil health. Arid regions account for about 41% of the world's land surface and sustain more than 38% of the world's population. As an important grain production reserve area in China, the arid and semi-arid region of Northwest China still lacks research on soil health, due to the complexity, fragility and sensitivity of soil ecosystems in this region. In this review, we summarize the relationship between soil microorganisms and the ecosystem services that related to soil health, including plant growth regulation, continuous cropping barrier reduction, water quality improvement, human health maintenance, climate change mitigation, and soil carbon sequestration, suggesting the important roles of soil microbiome for soil health. In addition, we review the development of soil microorganisms as indicators in soil health assessment in arid region. Meanwhile, we introduce the characteristics of soil microbiome in arid region and their responses to environment stresses, particularly drought. Besides, the research progresses of soil health in arid regions are summarized. Finally, we prospected key research questions of soil microbiome and soil health in arid region, and provide new insights for applying soil microbial resources to maintain and improve soil health in arid regions.

    参考文献
    [1] Zhu Y G,Peng J J,Wei Z,et al. Soil microbiome and soil health[J]. Science China:Life Sciences,2021,51(1):11. [朱永官,彭静静,韦中,等. 土壤微生物组与土壤健康[J]. 中国科学:生命科学,2021,51(1):11.]
    [2] Doran J W,Zeiss M R. Soil health and sustainability:Managing the biotic component of soil quality[J]. Applied Soil Ecology,2000,15(1):3-11.
    [3] Bunemann E K,Bongiorno G,Bai Z G,et al. Soil quality - A critical review[J]. Soil Biology & Biochemistry,2018,120:105-125.
    [4] Banerjee S,van der Heijden M G A. Soil microbiomes and one health[J]. Nature Reviews Microbiology,2023,21:6-20.
    [5] Shen J B,Bai Y,Wei Z,et al. Rhizobiont:An interdisciplinary innovation and perspective for harmonizing resources,environment,and food security[J]. Acta Pedologica Sinica,2021,58(4):805-813. [申建波,白洋,韦中,等. 根际生命共同体:协调资源、环境和粮食安全的学术思路与交叉创新[J]. 土壤学报,2021,58(4):805-813.]
    [6] Shen R F,Wang C,Sun B. Soil related scientific and technological problems in implementing strategy of “Storing Grain in Land and Technology”[J]. Bulletin of Chinese Academy of Sciences,2018,33(2):135-144. [沈仁芳,王超,孙波. “藏粮于地、藏粮于技”战略实施中的土壤科学与技术问题[J]. 中国科学院院刊,2018,33(2):135-144.]
    [7] Chen X,Zhang X D,Yu W T,et al. Efficient management on soil and fertilizer to promote sustainable development of local agro-ecosystems in Liaohe Plain,China[J]. Bulletin of Chinese Academy of Sciences,2018,33(9):992-999. [陈欣,张旭东,宇万太,等. 坚持土肥高效管理促进区域农田生态系统可持续发展[J]. 中国科学院院刊,2018,33(9):992-999.]
    [8] Li X Z,Luo Y M,Hou D Y. The indicators,framework and procedures for soil health:A critical review[J]. Acta Pedologica Sinica,2022,59(3):617-624. [李烜桢,骆永明,侯德义. 土壤健康评估指标、框架及程序研究进展[J]. 土壤学报,2022,59(3):617-624.]
    [9] Rinot O,Levy G J,Steinberger Y,et al. Soil health assessment:A critical review of current methodologies and a proposed new approach[J]. Science of the Total Environment,2019,648:1484-1491.
    [10] Fierer N,Wood S A,de Mesquita C P B. How microbes can,and cannot,be used to assess soil health[J]. Soil Biology & Biochemistry,2021,153:108111.
    [11] Govaerts B,Mezzalama M,Unno Y,et al. Influence of tillage,residue management,and crop rotation on soil microbial biomass and catabolic diversity[J]. Applied Soil Ecology,2007,37(1/2):18-30.
    [12] Li Y,Chang S X,Tian L H,et al. Conservation agriculture practices increase soil microbial biomass carbon and nitrogen in agricultural soils:A global meta-analysis[J]. Soil Biology & Biochemistry,2018,121:50-58.
    [13] Li Y Z,Long M,Hou Y T,et al. Root exudation processes induce the utilization of microbial-derived components by rhizoplane microbiota under conservation agriculture[J]. Soil Biology & Biochemistry,2023,178:108956.
    [14] Liu B,Arlotti D,Huyghebaert B,et al. Disentangling the impact of contrasting agricultural management practices on soil microbial communities-importance of rare bacterial community members[J]. Soil Biology & Biochemistry,2022,166:108573.
    [15] Man M,Tosi M,Dunfield K E,et al. Tillage management exerts stronger controls on soil microbial community structure and organic matter molecular composition than N fertilization[J]. Agriculture Ecosystems & Environment,2022,336:108028.
    [16] Lian X,Piao S L,Chen A P,et al. Multifaceted characteristics of dryland aridity changes in a warming world[J]. Nature Reviews Earth & Environment,2021,2(4):232-250.
    [17] Liu X,Shi L J,Qian H Y,et al. New problems of food security in northwest china:A sustainability perspective[J]. Land Degradation & Development,2020,31(8):975-989.
    [18] Gao W S,Chen Y Q,Shi Y Q,et al. Constructing an index system for ecological health evaluation of cropping system in China main food production areas[J]. Chinese Agricultural Science Bulletin,2007,23(10):131-137. [高旺盛,陈源泉,石彦琴,等. 中国集约高产农田生态健康评价方法及指标体系初探[J]. 中国农学通报,2007,23(10):131-137.]
    [19] Sun B,Zhang T L,Zhao Q G. Comprehensive evaluation of soil fertility in the hilly and mountainous region of southeastern China[J]. Acta Pedologica Sinica,1995,32(4):362-369.] 孙波,张桃林,赵其国. 我国东南丘陵山区土壤肥力的综合评价[J]. 土壤学报,1995,32(4):362-369.]
    [20] Luo Z,Li Z,Sun J,et al. Multiple mechanisms collectively mediate tungsten homeostasis and resistance in Citrobacter sp. Lzp2[J]. Journal of Hazardous Materials,2023,448:130877.
    [21] Zhou Y Q,Sun B Y,Xie B H,et al. Warming reshaped the microbial hierarchical interactions[J]. Global Change Biology,2021,27(24):6331-6347.
    [22] Zhang D D,Sheng H,Xiao H C,et al. Assessment methods of soil health and their applications[J]. Soils and Crops,2023,12(1):109-116. [张丹丹,盛浩,肖华翠,等. 土壤健康的评价方法及应用[J]. 土壤与作物,2023,12(1):109-116.]
    [23] Jiao S,Qi J J,Jin C J,et al. Core phylotypes enhance the resistance of soil microbiome to environmental changes to maintain multifunctionality in agricultural ecosystems[J]. Global Change Biology,2022,28(22):6653-6664.
    [24] Jian J S,Du X,Stewart R D. A database for global soil health assessment[J]. Scientific Data,2020,7(1):16.
    [25] Karlen D,Veum K S,Sudduth K A,et al. Soil health assessment:Past accomplishments,current activities,and future opportunities[J]. Soil & Tillage Research,2019,195:104365.
    [26] Vacheron J,Desbrosses G,Bouffaud M L,et al. Plant growth-promoting rhizobacteria and root system functioning[J]. Frontiers in Plant Science,2013,4:356.
    [27] Kang Y J,Cheng J,Mei L J,et al. Action mechanisms of soil plant growth-promoting rhizobacteria(PGPR):A review[J]. Chinese Journal of Applied Ecology,2010,21(1):232-238. [康贻军,程洁,梅丽娟,等. 植物根际促生菌作用机制研究进展[J]. 应用生态学报,2010,21(1):232-238.]
    [28] Dierks J,Blaser-Hart W J,Gamper H A,et al. Mycorrhizal fungi-mediated uptake of tree-derived nitrogen by maize in smallholder farms[J]. Nature Sustainability,2022,5(1):64-70.
    [29] Wang G W,Jin Z X,George T S,et al. Arbuscular mycorrhizal fungi enhance plant phosphorus uptake through stimulating hyphosphere soil microbiome functional profiles for phosphorus turnover[J]. New Phytologist,2023,238(6):2578-2593.
    [30] Fan K K,Delgado-Baquerizo M,Guo X S,et al. Biodiversity of key-stone phylotypes determines crop production in a 4-decade fertilization experiment[J]. The ISME Journal,2021,15(2):550-561.
    [31] Oliverio A M,Geisen S,Delgado-Baquerizo M,et al. The global-scale distributions of soil protists and their contributions to belowground systems[J]. Science Advances,2020,6(4):eaax8787.
    [32] Chen B B,Xiong W,Qi J J,et al. Trophic interrelationships drive the biogeography of protistan community in agricultural ecosystems[J]. Soil Biology & Biochemistry,2021,163:108445.
    [33] Bardgett R D,van der Putten W H. Belowground biodiversity and ecosystem functioning[J]. Nature,2014,515(7528):505-511.
    [34] de Vries F T,Liiri M E,Bjornlund L,et al. Land use alters the resistance and resilience of soil food webs to drought[J]. Nature Climate Change,2012,2(4):276-280.
    [35] Wagg C,Schlaeppi K,Banerjee S,et al. Fungal-bacterial diversity and microbiome complexity predict ecosystem functioning[J]. Nature Communications,2019,10(1):4841.
    [36] Guo S,Tao C Y,Jousset A,et al. Trophic interactions between predatory protists and pathogen-suppressive bacteria impact plant health[J]. The ISME Journal,2022,16(8):1932-1943.
    [37] Zhou X,Wang J T,Liu F,et al. Cross-kingdom synthetic microbiota supports tomato suppression of fusarium wilt disease[J]. Nature Communications,2022,13(1):7890.
    [38] Allsup C M,George I,Lankau R A. Shifting microbial communities can enhance tree tolerance to changing climates[J]. Science,2023,380(6647):835-840.
    [39] Schmitz L,Yan Z C,Schneijderberg M,et al. Synthetic bacterial community derived from a desert rhizosphere confers salt stress resilience to tomato in the presence of a soil microbiome[J]. The ISME Journal,2022,16(8):1907-1920.
    [40] Huang C Z,Xu L,Sun J J,et al. Allelochemical p-hydroxybenzoic acid inhibits root growth via regulating ROS accumulation in cucumber(Cucumis sativus L.)[J]. Journal of Integrative Agriculture,2020,19(2):518-527.
    [41] Chen F H,Shen N K,Jiang M G,et al. Research progress of autotoxic secretions in crops replant successive cropping obstacles[J]. Journal of Agricultural Science and Technology,2022,24(10):125-132.
    [42] Li C W,Chen G Z,Zhang J L,et al. The comprehensive changes in soil properties are continuous cropping obstacles associated with American ginseng(Panax quinquefolius)cultivation[J]. Scientific Reports,2021,11(1):5068.
    [43] Ali A,Ghani M I,Ding H Y,et al. Garlic substrate induces cucumber growth development and decreases fusarium wilt through regulation of soil microbial community structure and diversity in replanted disturbed soil[J]. International Journal of Molecular Sciences,2020,21(17):6008.
    [44] Mazzola M,Manici L M. Apple replant disease:Role of microbial ecology in cause and control[J]. Annual Review of Phytopathology,2012,50:45-65.
    [45] Zhao J,Zhang X D,Wang L C,et al. Detection and allelopathic effect of allelochemicals in the rhizosphere soil of continuously cropped Panax notoginseng(Burk.)[J]. Chinese Journal of Microecology,2018,30(2):146-154. [赵静,张晓东,王连春,等. 三七重茬根际土壤中化感物质的测定及其对三七根腐菌的生长作用[J]. 中国微生态学杂志,2018,30(2):146-154.]
    [46] Zhu B T,Jia X L,Hai X,et al. Screening and identification of p-hydroxybenzoic acid-degrading strain ZL22 from Wuyi tea continuous cropping soil[J]. Microbiology,2022,91(6):727-734.
    [47] Liu Y,Wang H,Qian X,et al. Metagenomics insights into responses of rhizobacteria and their alleviation role in licorice allelopathy[J]. Microbiome,2023,11(1):109.
    [48] Khorram M S,Zhang G,Fatemi A,et al. Impact of biochar and compost amendment on soil quality,growth and yield of a replanted apple orchard in a 4-year field study[J]. Journal of the Science of Food and Agriculture,2019,99(4):1862-1869.
    [49] Zhang H Y,Yang W F. Effect of cucumbers and red peppers-rice rotation mode on continuous cropping obstacles[J]. Journal of Guangxi Agriculture. 2017,30(3):9-13. [张红叶,杨文飞. 黄瓜、红辣椒-水稻轮作模式对连作障碍的影响[J]. 广西农学报,2017,30(3):9-13.]
    [50] Duan Y A,Zhao L,Jiang W T,et al. The phlorizin-degrading Bacillus licheniformis XNRB-3 mediates soil microorganisms to alleviate apple replant disease[J]. Frontiers in Microbiology,2022,13.
    [51] Li Z F,Bai X L,Jiao S,et al. A simplified synthetic community rescues Astragalus mongholicus from root rot disease by activating plant-induced systemic resistance[J]. Microbiome,2021,9(1):217.
    [52] Wang X F,Wei Z,Yang K M,et al. Phage combination therapies for bacterial wilt disease in tomato[J]. Nature Biotechnology,2019,37(12):1513-1520.
    [53] Zimnicki T,Boring T,Evenson G,et al. On quantifying water quality benefits of healthy soils[J]. Bioscience,2020,70(4):343-352.
    [54] Zuo X,Xu W,Wei S,et al. Aerobic denitrifying bacterial-fungal consortium mediating nitrate removal:Dynamics,network patterns and interactions[J]. iScience,2023,26(6):106824.
    [55] Dai Z M,Liu G F,Chen H H,et al. Long-term nutrient inputs shift soil microbial functional profiles of phosphorus cycling in diverse agroecosystems[J]. The ISME Journal,2020,14(3):757-770.
    [56] Chen Q L,Ding J,Zhu Y G,et al. Soil bacterial taxonomic diversity is critical to maintaining the plant productivity[J]. Environment International,2020,140:105766.
    [57] Li G,Sun G X,Williams P N,et al. Inorganic arsenic in Chinese food and its cancer risk[J]. Environment International,2011,37(7):1219-1225.
    [58] Fu T Y,Gao X T,Wang L,et al. Research progress on microbial transformation and metabolic mechanism of heavy metals in contaminated soil[J]. Hydrometallurgy of China,2022,41(4):295-300. [付田雨,高小童,王磊,等. 污染土壤中重金属铅镉的微生物转化与代谢机制研究进展[J]. 湿法冶金,2022,41(4):295-300.]
    [59] Wang X,Xu Q,Hu K,et al. A coculture of enterobacter and comamonas species reduces cadmium accumulation in rice[J]. Molecular Plant-Microbe Interactions,2023,36(2):95-108.
    [60] Chen C,Li L Y,Huang K,et al. Sulfate-reducing bacteria and methanogens are involved in arsenic methylation and demethylation in paddy soils[J]. The ISME Journal,2019,13(10):2523-2535.
    [61] Lamichhane S,Krishna K C B,Sarukkalige R. Polycyclic aromatic hydrocarbons(PAHs)removal by sorption:A review[J]. Chemosphere,2016,148:336-353.
    [62] Gao S,Zhou G,Chang D,et al. Southern China can produce more high-quality rice with less N by green manuring[J]. Resources,Conservation and Recycling,2023,196:107025.
    [63] Jansson J K,Hofmockel K S. Soil microbiomes and climate change[J]. Nature Reviews Microbiology,2020,18(1):35-46.
    [64] Zheng D S,Yin G Y,Liu M,et al. Global biogeography and projection of soil antibiotic resistance genes[J]. Science Advances,2022,8(46):eabq8015.
    [65] Zhu Y G,Zhao Y,Zhu D,et al. Soil biota,antimicrobial resistance and planetary health[J]. Environment International,2019,131:105059.
    [66] Du S,Shen J P,Hu H W,et al. Large-scale patterns of soil antibiotic resistome in Chinese croplands[J]. Science of the Total Environment,2020,712:136418.
    [67] Dungan R S,Strausbaugh C A,Leytem A B. Survey of selected antibiotic resistance genes in agricultural and non-agricultural soils in south-central Idaho[J]. FEMS Microbiology Ecology,2019,95(6):fiz071.
    [68] Lemos L N,Pedrinho A,de Vasconcelos A T R,et al. Amazon deforestation enriches antibiotic resistance genes[J]. Soil Biology & Biochemistry,2021,153:108110.
    [69] Sun J T,Jin L,He T T,et al. Antibiotic resistance genes(ARGs)in agricultural soils from the Yangtze River Delta,China[J]. Science of the Total Environment,2020,740:140001.
    [70] Zhu D,Chen Q L,Ding J,et al. Antibiotic resistance genes in the soil ecosystem and planetary health:Progress and prospect[J]. Science China:Life Sciences,2019,49(12):1652-1663. [朱冬,陈青林,丁晶,等. 土壤生态系统中抗生素抗性基因与星球健康:进展与展望[J]. 中国科学:生命科学,2019,49(12):1652-1663.]
    [71] Zhu D,Ding J,Wang Y F,et al. Effects of trophic level and land use on the variation of animal antibiotic resistome in the soil food web[J]. Environmental Science & Technology,2022,56(21):14937-14947.
    [72] LeGault K N,Hays S G,Angermeyer A,et al. Temporal shifts in antibiotic resistance elements govern phage-pathogen conflicts[J]. Science,2021,373(6554):eabg2166.
    [73] Jansson J K,Wu R N. Soil viral diversity,ecology and climate change[J]. Nature Reviews Microbiology,2023,21(5):296-311.
    [74] Leslie H A,van Velzen M J M,Brandsma S H,et al. Discovery and quantification of plastic particle pollution in human blood[J]. Environment International,2022,163:107199.
    [75] Liu L C,Xu M J,Ye Y H,et al. On the degradation of(micro)plastics:Degradation methods,influencing factors,environmental impacts[J]. Science of the Total Environment,2022,806:151312.
    [76] Lin T,Tang J,Li S,et al. Drought stress mediated differences in phyllosphere microbiome and associated pathogen resistance between male and female poplars[J]. The Plant Journal:for Cell and Molecular Biology,2023,115(4):1100-1113.
    [77] Hartmann M,Six J. Soil structure and microbiome functions in agroecosystems[J]. Nature Reviews Earth & Environment,2023,4(1):4-18.
    [78] Zhou L G,Liu Y T,Zhang Y P,et al. Soil respiration after six years of continuous drought stress in the tropical rainforest in southwest China[J]. Soil Biology & Biochemistry,2019,138:107564.
    [79] Tao F,Huang Y,Hungate B A,et al. Microbial carbon use efficiency promotes global soil carbon storage[J]. Nature,2023,618(7967):981-985.
    [80] Tong D,Wang Y,Yu H,et al. Viral lysing can alleviate microbial nutrient limitations and accumulate recalcitrant dissolved organic matter components in soil[J]. The ISME Journal,2023,17(8):1247-1256.
    [81] Baldock J A,Beare M H,Curtin D,et al. Stocks,composition and vulnerability to loss of soil organic carbon predicted using mid-infrared spectroscopy[J]. Soil Research,2018,56(5):468-480.
    [82] Garcia R A,Cabeza M,Rahbek C,et al. Multiple dimensions of climate change and their implications for biodiversity[J]. Science,2014,344(6183):1247579-1247579.
    [83] Trisos C H,Merow C,Pigot A L. The projected timing of abrupt ecological disruption from climate change[J]. Nature,2020,580(7804):496-501.
    [84] Xu M,Li X L,Kuyper T W,et al. High microbial diversity stabilizes the responses of soil organic carbon decomposition to warming in the subsoil on the Tibetan Plateau[J]. Global Change Biology,2021,27(10):2061-2075.
    [85] Canarini A,Schmidt H,Fuchslueger L,et al. Ecological memory of recurrent drought modifies soil processes via changes in soil microbial community[J]. Nature Communications,2021,12(1):5308.
    [86] de Vries F T,Griffiths R I,Bailey M,et al. Soil bacterial networks are less stable under drought than fungal networks[J]. Nature Communications,2018,9(1):3033.
    [87] Qi Q,Zhao J S,Tian R M,et al. Microbially enhanced methane uptake under warming enlarges ecosystem carbon sink in a Tibetan alpine grassland[J]. Global Change Biology,2022,28(23):6906-6920.
    [88] Yuan M M,Guo X,Wu L W,et al. Climate warming enhances microbial network complexity and stability[J]. Nature Climate Change,2021,11(4):343-348.
    [89] Dai Z M,Su W Q,Chen H H,et al. Long-term nitrogen fertilization decreases bacterial diversity and favors the growth of Actinobacteria and Proteobacteria in agro-ecosystems across the globe[J]. Global Change Biology,2018,24(8):3452-3461.
    [90] Cherubin M R,Karlen D L,Franco A L C,et al. A soil management assessment framework(SMAF)evaluation of Brazilian sugarcane expansion on soil quality[J]. Soil Science Society of America Journal,2016,80(1):215-226.
    [91] van Es H M,Karlen D L. Reanalysis validates soil health indicator sensitivity and correlation with long-term crop yields[J]. Soil Science Society of America Journal,2019,83(3):721-732.
    [92] Lehmann J,Bossio D A,Kögel-Knabner I,et al. The concept and future prospects of soil health[J]. Nature Reviews Earth & Environment,2020,1(10):544-553.
    [93] Stewart R D,Jian J,Gyawali A J,et al. What we talk about when we talk about soil health[J]. Agricultural & Environmental Letters,2018,3(1):180033.
    [94] Banerjee S,Schlaeppi K,van der Heijden M G A. Keystone taxa as drivers of microbiome structure and functioning[J]. Nature Reviews Microbiology,2018,16(9):567-576.
    [95] Yang T,Siddique K H,Liu K. Cropping systems in agriculture and their impact on soil health-A review[J]. Global Ecology and Conservation,2020,23:e01118.
    [96] Nunes M R,Karlen D L,Veum K S,et al. Biological soil health indicators respond to tillage intensity:A US meta-analysis[J]. Geoderma,2020,369:114335.
    [97] Liang W J,Dong Y H,Li Y B,et al. Biological characterization and regulation of soil health[J]. Chinese Journal of Applied Ecology,2021,32(2):719-728. [梁文举,董元华,李英滨,等. 土壤健康的生物学表征与调控[J]. 应用土壤学报,2021,32(2):719-728.]
    [98] Verstraete M M,Scholes R J,Smith M S. Climate and desertification:Looking at an old problem through new lenses[J]. Frontiers in Ecology and the Environment,2009,7(8):421-428.
    [99] Makhalanyane T P,Valverde A,Gunnigle E,et al. Microbial ecology of hot desert edaphic systems[J]. FEMS Microbiology Reviews,2015,39(2):203-221.
    [100] Fierer N,Leff J W,Adams B J,et al. Cross-biome metagenomic analyses of soil microbial communities and their functional attributes[J]. Proceedings of the National Academy of Sciences of the United States of America,2012,109(52):21390-21395.
    [101] Johnson R M,Ramond J B,Gunnigle E,et al. Namib desert edaphic bacterial,fungal and archaeal communities assemble through deterministic processes but are influenced by different abiotic parameters[J]. Extremophiles,2017,21(2):381-392.
    [102] Neilson J W,Califf K,Cardona C,et al. Significant impacts of increasing aridity on the arid soil microbiome[J]. mSystems,2017,2(3):e00195-16.
    [103] Preece C,Verbruggen E,Liu L,et al. Effects of past and current drought on the composition and diversity of soil microbial communities[J]. Soil Biology & Biochemistry,2019,131:28-39.
    [104] Llado S,Lopez-Mondejar R,Baldrian P. Forest soil bacteria:Diversity,involvement in ecosystem processes,and response to global change[J]. Microbiology and Molecular Biology Reviews,2017,81(2):e00063.
    [105] Manzoni S,Schimel J P,Porporato A. Responses of soil microbial communities to water stress:Results from a meta-analysis[J]. Ecology,2012,93(4):930-938.
    [106] Allison S D. Microbial drought resistance may destabilize soil carbon[J]. Trends in Microbiology,2023,31(8):780-787.
    [107] Chen Y L,Xu Z W,Xu T L,et al. Nitrogen deposition and precipitation induced phylogenetic clustering of arbuscular mycorrhizal fungal communities[J]. Soil Biology & Biochemistry,2017,115:233-242.
    [108] Hu W G,Ran J Z,Dong L W,et al. Aridity-driven shift in biodiversity-soil multifunctionality relationships[J]. Nature Communications,2021,12(1):5350.
    [109] Delgado-Baquerizo M,Maestre F T,Gallardol A,et al. Decoupling of soil nutrient cycles as a function of aridity in global drylands[J]. Nature,2013,502(7473):672-676.
    [110] de Vries F T,Williams A,Stringer F,et al. Changes in root-exudate-induced respiration reveal a novel mechanism through which drought affects ecosystem carbon cycling[J]. New Phytologist,2019,224(1):132-145.
    [111] Kelso M A,Wigginton R D,Grosholz E D. Nutrients mitigate the impacts of extreme drought on plant invasions[J]. Ecology,2020,101(4):e02980.
    [112] Chen Q L,Hu H W,Sun A Q,et al. Aridity decreases soil protistan network complexity and stability[J]. Soil Biology & Biochemistry,2022,166:108575.
    [113] Huang J P,Yu H P,Guan X D,et al. Accelerated dryland expansion under climate change[J]. Nature Climate Change,2016,6(2):166-171.
    [114] Schlesinger W H,Reynolds J F,Cunningham G L,et al. Biological feedbacks in global desertification[J]. Science,1990,247(4946):1043-1048.
    [115] Wang Y G,Luo G P,Li C F,et al. Effects of land clearing for agriculture on soil organic carbon stocks in drylands:A meta-analysis[J]. Global Change Biology,2023,29(2):547-562.
    [116] Karaca S,Dengiz O,Turan I D,et al. An assessment of pasture soils quality based on multi-indicator weighting approaches in semi-arid ecosystem[J]. Ecological Indicators,2021,121:107001.
    [117] Eldridge D J,Delgado-Baquerizo M,Quero J L,et al. Surface indicators are correlated with soil multifunctionality in global drylands[J]. Journal of Applied Ecology,2020,57(2):424-435.
    [118] Zhang X,Shen S W,Xue S Q,et al. Long-term tillage and cropping systems affect soil organic carbon components and mineralization in aggregates in semiarid regions[J]. Soil & Tillage Research,2023,231:105742.
    [119] Barberan A,McGuire K L,Wolf J A,et al. Relating belowground microbial composition to the taxonomic,phylogenetic,and functional trait distributions of trees in a tropical forest[J]. Ecology Letters,2015,18(12):1397-1405.
    [120] Delgado-Baquerizo M,Maestre F T,Reich P B,et al. Microbial diversity drives multifunctionality in terrestrial ecosystems[J]. Nature Communications,2016,7:10541.
    [121] Delgado-Baquerizo M,Trivedi P,Trivedi C,et al. Microbial richness and composition independently drive soil multifunctionality[J]. Functional Ecology,2017,31(12):2330-2343.
    [122] Saleem M,Hu J,Jousset A. More than the sum of its parts:Microbiome biodiversity as a driver of plant growth and soil health[J]. Annual Review of Ecology,Evolution,and Systematics,2019,50:145-168.
    [123] Silverstein M R,Segre D,Bhatnagar J M. Environmental microbiome engineering for the mitigation of climate change[J]. Global Change Biology,2023,29(8):2050-2066.
    [124] Zheng Z C,Liu B Y,Fang X,et al. Dryland farm soil may fix atmospheric carbon through autotrophic microbial pathways[J]. Catena,2022,214:106299.
    [125] Seneca J,Pjevac P,Canarini A,et al. Composition and activity of nitrifier communities in soil are unresponsive to elevated temperature and CO2,but strongly affected by drought[J]. The ISME Journal,2020,14(12):3038-3053.
    [126] Qi M S,Berry J C,Veley K W,et al. Identification of beneficial and detrimental bacteria impacting sorghum responses to drought using multi-scale and multi-system microbiome comparisons[J]. The ISME Journal,2022,16(8):1957-1969.
    [127] Jiao S,Peng Z H,Qi J J,et al. Linking bacterial-fungal relationships to microbial diversity and soil nutrient cycling[J]. mSystems,2021,6(2):e01052-20.
    [128] Gonzalez R,Butkovic A,Escaray F J,et al. Plant virus evolution under strong drought conditions results in a transition from parasitism to mutualism[J]. Proceedings of the National Academy of Sciences of the United States of America,2021,118(6):e2020990118.
    [129] Delgado-Baquerizo M,Eldridge D J,Ochoa V,et al. Soil microbial communities drive the resistance of ecosystem multifunctionality to global change in drylands across the globe[J]. Ecology Letters,2017,20(10):1295-1305.
    [130] Malik A A,Swenson T,Weihe C,et al. Drought and plant litter chemistry alter microbial gene expression and metabolite production[J]. The ISME Journal,2020,14(9):2236-2247.
    [131] Wilhelm R C,Amsili J P,Kurtz K S M,et al. Correction:Ecological insights into soil health according to the genomic traits and environment-wide associations of bacteria in agricultural soils[J]. ISME Communications,2023,3(1):35.
    [132] Jiao S,Xu Y Q,Zhang J,et al. Core microbiota in agricultural soils and their potential associations with nutrient cycling[J]. mSystems,2019,4(2):e00313-18.
    [133] Zhang H Y,Bissett A,Aguilar-Trigueros C A,et al. Fungal genome size and composition reflect ecological strategies along soil fertility gradients[J]. Ecology Letters,2023,26(7):1108-1118.
    [134] Li H,Luo Q P,Zhao S,et al. Watershed urbanization enhances the enrichment of pathogenic bacteria and antibiotic resistance genes on microplastics in the water environment[J]. Environmental Pollution,2022,313:120185.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

焦硕,戚杰军,刘纪爱,刘禹,舒敦涛,李哲斐,陈卫民,韦革宏.旱区土壤微生物组与土壤健康评价[J].土壤学报,2023,60(5):1350-1362. DOI:10.11766/trxb202307210285 JIAO Shuo, QI Jiejun, LIU Jiai, LIU Yu, SHU Duntao, LI Zhefei, CHEN Weimin, WEI Gehong. Soil Microbiome and Soil Health Assessment in Arid Regions[J]. Acta Pedologica Sinica,2023,60(5):1350-1362.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-07-21
  • 最后修改日期:2023-08-28
  • 录用日期:2023-09-04
  • 在线发布日期: 2023-09-04
  • 出版日期: 2023-09-28
文章二维码