中国农业面源污染防控研究进展与工程案例
作者:
基金项目:

国家重点研发计划项目(2021YFD1700801)资助


Progress in Research and Engineering Application Cases of Agricultural Non-Point Source Pollution Control in China
Author:
Fund Project:

National Key Research and Development Program of China (No. 2021YFD1700801)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [61]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    农业面源污染具有发生分散、随机,排放不确定性,污染物浓度波动大、类型复杂,污染面广量大的特点,其综合防治一直是世界性难题。当前,我国面源污染防控首要的问题为污染“家底”不清,不同部门或研究学者对农业面源污染负荷估算差别大。基于几十年定位、全程的科学观测数据,本研究认为,虽然国家污染普查数据和很多学者的估算数据,均高估了种植业排放量占面源污染总量的比例,但种植业源排放总量仍然很高,必须给予充分的重视和防控。结合中国30多年的面源污染防控经验,中国科学院南京土壤研究所学者提出了农业面源污染控制的3R(“减源—拦截—修复”)和4R策略(“源头减量—生态拦截—循环利用—生态修复”),并伴随着防控技术升级和组合优化、技术产品化和装备化,逐渐完善扩展为4R+,为我国农业面源污染防控提供了理论支撑和应用指导,在一些典型地区进行工程化实施后,形成了农业面源污染防控的成功经验和案例。然而,农业面源污染防控的工作仍然面临着许多挑战,深入了解土壤与污染物之间的相互作用机制将尤为关键,此外,为实现资源的高效循环使用,有必要进一步提高氮、磷等关键污染物的净化与回收效率,确保在增进农业产值的同时降低对环境的污染负荷。

    Abstract:

    Non-point source pollution from agriculture is characterized by its dispersed and random occurrence, uncertain discharge, fluctuating concentrations, diverse pollutant types, and widespread, high-volume impact, making its management a global challenge. At present, the prevention and control of non-point source pollution in China remains a challenge due to unclear overall pollution levels, and the estimation of non-point source pollution load varies greatly among different departments or researchers. Based on decades of site-specific experiments and holistic observational data, it was believed that even though both the national pollution census data and estimations from researchers have overestimated the proportion of pollution emissions from plantations in the total amount of non-point source pollution, the total emissions from plantation remain high and must be given adequate attention and control. Drawing on more than 30 years of experience in controlling non-point source pollution in China, scholars from the Institute of Soil Science, Chinese Academy of Sciences have proposed the 3R (Reduce-Retain-Restore) and 4R (Reduce-Retain-Reuse-Restore) strategies for agricultural non-point source pollution control. Accompanied by upgrades in prevention and control technology, optimization of combinations, technological productization, and equipping the 4R strategy has gradually evolved and expanded into 4R+, providing theoretical support and practical guidance for the control of non-point source pollution in China. After being implemented in some typical areas, these strategies have resulted in successful experiences and case studies in controlling agricultural non-point source pollution. Nevertheless, the prevention and control of agricultural non-point source pollution still faces many challenges. A deeper understanding of the interaction mechanisms between soil and pollutants is pivotal. Moreover, to achieve efficient resource recycling, it is imperative to enhance the purification and recovery rates of key pollutants such as nitrogen and phosphorus, ensuring that agricultural productivity is increased while simultaneously reducing the environmental pollutant load.

    参考文献
    [1] Quan W M,Yan L J. Effects of agricultural non-point source pollution on eutrophication of water body and its control measure[J]. Acta Ecologica Sinica,2002,22(3):291-299. [全为民,严力蛟. 农业面源污染对水体富营养化的影响及其防治措施[J]. 生态学报,2002,22(3):291-299.
    [2] Zhu Z L,Sun B,Yang L Z,et al. Policy and countermeasures to control non-point pollution of agriculture in China[J]. Science & Technology Review,2005,23(4):47-51. [朱兆良,孙波,杨林章,等. 我国农业面源污染的控制政策和措施[J]. 科技导报,2005,23(4):47-51.]
    [3] Zhang W L,Wu S X,Ji H J,et al. Estimation of agricultural non-point source pollution in China and the alleviating strategies I. Estimation of agricultural non- point source pollution in China in early 21 century[J]. Scientia Agricultura Sinica,2004,37(7):1008-1017. [张维理,武淑霞,冀宏杰,等. 中国农业面源污染形势估计及控制对策I. 21世纪初期中国农业面源污染的形势估计[J]. 中国农业科学,2004,37(7):1008-1017.]
    [4] Sun B,Zhang L X,Yang L Z,et al. Agricultural non-point source pollution in China:Causes and mitigation measures[J]. AMBIO,2012,41(4):370-379.
    [5] Tao C,Gao M,Xu C,et al. Research status and prospect on influential factors and control technology of agricultural non-point source pollution:A review[J]. Soils,2010,42(3):336-343. [陶春,高明,徐畅,等. 农业面源污染影响因子及控制技术的研究现状与展望[J]. 土壤,2010,42(3):336-343.]
    [6] Dai R H,Liu H J,Qu J H,et al. The effects of nitrogen-limitation and phosphorus-limitation on the growth and microcystin production of microcystis aeruginosa[J]. Acta Scientiae Circumstantiae,2008,28(9):1739-1744. [代瑞华,刘会娟,曲久辉,等. 氮磷限制对铜绿微囊藻生长和产毒的影响[J]. 环境科学学报,2008,28(9):1739-1744.]
    [7] Li Y C,Fan Z Y,Jiang G H,et al. Addressing the differences in farmers’ willingness and behavior regarding developing green agriculture-A case study in Xichuan County,China[J]. Land,2021,10(3):316.
    [8] Zhou X X. Effect of high fertilizer input in protected agriculture on secondary salinization of soil environment[D]. Shanghai:Donghua University,2013. [周鑫鑫. 设施农业肥料高投入对土壤环境次生盐渍化的影响研究[D]. 上海:东华大学,2013.]
    [9] Liu Y,Li H Y,Cui G,et al. Water quality attribution and simulation of non-point source pollution load flux in the Hulan River Basin[J]. Scientific Reports,2020,10(1):1-15.
    [10] Wang R,Min J,Kronzucker H J,et al. N and P runoff losses in China’s vegetable production systems:Loss characteristics,impact,and management practices[J]. Science of the Total Environment,2019,663:971-979.
    [11] Tao Y,Xu J,Ren H J,et al. Spatiotemporal evolution of agricultural non-point source pollution and its influencing factors in the Yellow River Basin[J]. Transactions of the Chinese Society of Agricultural Engineering,2021,37(4):257-264. [陶园,徐静,任贺靖,等. 黄河流域农业面源污染时空变化及因素分析[J]. 农业工程学报,2021,37(4):257-264.]
    [12] Min J,Sun H J,Chen G,et al. The practice of technologies for nitrogen emission reduction and efficiency increase in intensive farmland of Tai Lake region[J]. Journal of Agro-Environment Science,2018,37(11):2418-2426. [闵炬,孙海军,陈贵,等. 太湖地区集约化农田氮素减排增效技术实践[J]. 农业环境科学学报,2018,37(11):2418-2426.]
    [13] Zhao J,Ji Y,Liu Y,et al. Current situation,problems and suggestions on agricultural non-point source pollution in the Yangtze River Basin[J]. Environmental Protection,2022,50(17):30-32. [赵健,籍瑶,刘玥,等. 长江流域农业面源污染现状、问题与对策[J]. 环境保护,2022,50(17):30-32.]
    [14] Hua C L,Zhang C Q. Research on the farmers’ response behavior to education and training program for controlling agricultural non-point source pollution:soil test and formulation fertilizer program[J]. Ecological Economy,2016,32(10):193-197. [华春林,张灿强. 农户响应农业面源污染治理教育引导机制的行为研究——以测土配方施肥项目为例[J]. 生态经济,2016,32(10):193-197.]
    [15] Yang L Z,Shi W M,Xue L H,et al. Reduce-retain-reuse- restore technology for the controlling the agricultural non-point source pollution in countryside in China:General countermeasures and technologies[J]. Journal of Agro-Environment Science,2013,32(1):1-8. [杨林章,施卫明,薛利红,等. 农村面源污染治理的“4R”理论与工程实践——总体思路与“4R”治理技术[J]. 农业环境科学学报,2013,32(1):1-8.]
    [16] Xia Y Q,Zhao D,Yan X,et al. Dilemma and prospect of modelling in agricultural non-point source pollution in China[J]. Journal of Agro-Environment Science,2022,41(11):2327-2337. [夏永秋,赵娣,严星,等. 我国农业面源污染过程模拟的困境与展望[J]. 农业环境科学学报,2022,41(11):2327-2337.]
    [17] Huang S,Lü W S,Bloszies S,et al. Effects of fertilizer management practices on yield-scaled ammonia emissions from croplands in China:A meta-analysis[J]. Field Crops Research,2016,192:118-125.
    [18] Chen M P,Sun F,Shindo J. China’s agricultural nitrogen flows in 2011:Environmental assessment and management scenarios[J]. Resources,Conservation and Recycling,2016,111:10-27.
    [19] Ministry of Environmental Protection,People's Republic of China,National Bureau of Statistics,Ministry of Agriculture of the People's Republic of China. The first national pollution source census bulletin[R]. 2010. [中华人民共和国环境保护部,国家统计局,中华人民共和国农业部. 第一次全国污染源普查公报[R]. 2010.]
    [20] Ministry of Ecology and Environment of the People's Republic of China,National Bureau of Statistics,Ministry of Agriculture and Rural Affairs of the People's Republic of China. The second national pollution source census bulletin[R]. [中华人民共和国生态环境部,国家统计局,中华人民共和国农业农村部. 第二次全国污染源普查公报[R]. 2020.]
    [21] Hu Y,Lin Y,Jin S Q. The situation of agricultural non-point source pollution and the policy orientation of the 14th Five-Year Plan:Based on the comparative analysis of two pollution census bulletins[J]. Environmental Protection,2021,49(1):31-36. [胡钰,林煜,金书秦. 农业面源污染形势和“十四五”政策取向——基于两次全国污染源普查公报的比较分析[J]. 环境保护,2021,49(1):31-36.]
    [22] Song Y S,Fan X H,Lin D X,et al. Ammonia volatilation from paddy fields in the Taihu Lake region and its influencing factors[J]. Acta Pedologica Sinica,2004,41(2):265-269. [宋勇生,范晓晖,林德喜,等. 太湖地区稻田氨挥发及影响因素的研究[J]. 土壤学报,2004,41(2):265-269.]
    [23] Fu X,Wang S X,Ran L M,et al. Estimating NH3 emissions from agricultural fertilizer application in China using the bi-directional CMAQ model coupled to an agro-ecosystem model[J]. Atmospheric Chemistry and Physics,2015,15(12):6637-6649.
    [24] Gu B J,Ju X T,Chang J,et al. Integrated reactive nitrogen budgets and future trends in China[J]. Proceedings of the National Academy of Sciences of the United States of America,2015,112(28):8792-8797.
    [25] He W T,Jiang R,He P,et al. Estimating soil nitrogen balance at regional scale in China’s croplands from 1984 to 2014[J]. Agricultural Systems,2018,167:125-135.
    [26] Kang Y N,Liu M X,Song Y,et al. High-resolution ammonia emissions inventories in China from 1980 to 2012[J]. Atmospheric Chemistry & Physics,2016,16(4):2043-2058.
    [27] Xu P,Lin Y,Liao Y,et al. High resolution inventory of re-estimating ammonia emissions from agricultural fertilizer in China from 1978 to 2008[J]. Atmospheric Chemistry and Physics,2015,15:25299-25327.
    [28] Yu C Q,Huang X,Chen H,et al. Managing nitrogen to restore water quality in China[J]. Nature,2019,567(7749):516-520.
    [29] Ministry of Ecology and Environment of the People's Republic of China. The Second Biennial Update Report on Climate Change of the People's Republic of China[R]. 2018. [中华人民共和国生态环境部. 中华人民共和国气候变化第二次两年更新报告[R]. 2018.]
    [30] FAO. Food and Agriculture Organization of the United Nations. 2023. http://www.fao.org/faostat/en/#home.
    [31] Zhang Q,Ju X T,Zhang F S. Re-estimation of direct nitrous oxide emission from agricultural soils of China via revised IPCC2006 guideline method[J]. Chinese Journal of Eco-Agriculture,2010,18(1):7-13. [张强,巨晓棠,张福锁. 应用修正的IPCC2006方法对中国农田N2O排放量重新估算[J]. 中国生态农业学报,2010,18(1):7-13.]
    [32] Hou P F,Jiang Y,Yan L,et al. Effect of fertilization on nitrogen losses through surface runoffs in Chinese farmlands:A meta-analysis[J]. Science of the Total Environment,2021,793:148554.
    [33] Xia Y Q,Yang W X,Shi W M,et al. Estimation of non-point source N emission in intensive cropland of China[J]. Journal of Ecology and Rural Environment,2018,34(9):782-787. [夏永秋,杨旺鑫,施卫明,等. 我国集约化种植业面源氮发生量估算[J]. 生态与农村环境学报,2018,34(9):782-787.]
    [34] Yang W X,Xia Y Q,Jiang X S,et al. Influencing factors and estimation of total phosphorus runoff from farmlands in China[J]. Journal of Agro-Environment Science,2015,34(2):319-325. [杨旺鑫,夏永秋,姜小三,等. 我国农田总磷径流损失影响因素及损失量初步估算[J]. 农业环境科学学报,2015,34(2):319-325.]
    [35] Huang X,Song Y,Li M M,et al. A high‐resolution ammonia emission inventory in China[J]. Global Biogeochemical Cycles,2012,26(1):GB1030.
    [36] Zhu Z L. Loss of fertilizer N from plants-soil system and the strategies and techniques for its reduction[J]. Soil and Environmental Sciences,2000,9(1):1-6. [朱兆良. 农田中氮肥的损失与对策[J]. 土壤与环境,2000,9(1):1-6.]
    [37] Zhang M,Tian Y H,Zhao M,et al. The assessment of nitrate leaching in a rice-wheat rotation system using an improved agronomic practice aimed to increase rice crop yields[J]. Agriculture,Ecosystems & Environment,2017,241:100-109.
    [38] Xue L H,Yu Y L,Yang L Z. Nitrogen balance and environmental impact of paddy field under different N management methods in Taihu Lake region[J]. Acta Scientiae Circumstantiae,2011,32(4):1133-1138. [薛利红,俞映倞,杨林章. 太湖流域稻田不同氮肥管理模式下的氮素平衡特征及环境效应评价[J]. 环境科学学报,2011,32(4):1133-1138.]
    [39] Zhao X,Xie Y X,Xiong Z Q,et al. Nitrogen fate and environmental consequence in paddy soil under rice-wheat rotation in the Taihu Lake region,China[J]. Plant and Soil,2009,319(1):225-234.
    [40] Min J,Zhao X,Shi W M,et al. Nitrogen balance and loss in a greenhouse vegetable system in Southeastern China[J]. Pedosphere,2011,21(4):464-472.
    [41] Min J,Ji R T,Wang X,et al. Changes in planting structure and nitrogen and phosphorus loss loads of farmland in Taihu Lake region[J]. Chinese Journal of Eco-Agriculture,2020,28(8):1230-1238. [闵炬,纪荣婷,王霞,等. 太湖地区种植结构及农田氮磷流失负荷变化[J]. 中国生态农业学报,2020,28(8):1230-1238.]
    [42] Li J,Min Q W,Li W H,et al. Pollution assessment of rice agriculture in the Taihu Lake watershed based on the pollution footprint:A case study of Changzhou city and Yixing city,China[J]. Journal of Agricultural Resources and Environment,2014,31(4):372-380. [李静,闵庆文,李文华,等. 基于污染足迹的太湖流域稻作农业污染评估——以常州市和宜兴市为例[J]. 农业资源与环境学报,2014,31(4):372-380.]
    [43] Huang J C,Zhang J,Ji Y L,et al. Thoughts on modelling and control of agricultural non-point source pollution in the lowland areas of Lake Taihu Basin,China[J]. Journal of Agro-Environment Science,2022,41(11):2365-2370. [黄佳聪,张京,季雨来,等. 太湖流域平原农业面源污染模拟与管控的思考[J]. 农业环境科学学报,2022,41(11):2365-2370.]
    [44] Pang Y J,Yuan Z W. Quantification of pollutants in rainfall-runoff in plain areas with dense river networks:A case study in the Western Bank of Wangyu River,Taihu Basin[J]. Journal of Lake Sciences,2021,33(2):439-448. [庞琰瑾,袁增伟. 平原河网区降雨径流污染负荷测算——以太湖流域望虞河西岸为例[J]. 湖泊科学,2021,33(2):439-448.]
    [45] Zhao Y Q,Xia Y Q,Ti C P,et al. Nitrogen removal capacity of the river network in a high nitrogen loading region[J]. Environmental Science & Technology,2015,49(3):1427-1435.
    [46] Li X B,Xia Y Q,Li Y F,et al. Sediment denitrification in waterways in a rice-paddy-dominated watershed in eastern China[J]. Journal of Soils and Sediments,2013,13(4):783-792.
    [47] Cheng H G,Hao F H,Ren X Y,et al. The study of the rate loss of nitrogenous non-point source pollution loads in different precipitation levels[J]. Acta Scientiae Circumstantiae,2006,26(3):392-397. [程红光,郝芳华,任希岩,等. 不同降雨条件下非点源污染氮负荷入河系数研究[J]. 环境科学学报,2006,26(3):392-397.]
    [48] Qiu J,She D L,Xia Y Q. Research on estimation method of national non-point source pollution loading from planting system[J]. Research of Agricultural Modernization,2021,42(2):198-205. [邱捷,佘冬立,夏永秋. 国家尺度种植业面源污染负荷估算方法研究[J]. 农业现代化研究,2021,42(2):198-205.]
    [49] Yan L Z,Shi M J,Wang L. Review of agricultural non-point pollution in Taihu Lake and Taihu Basin[J]. China Population,Resources and Environment,2010,20(1):99-107. [闫丽珍,石敏俊,王磊. 太湖流域农业面源污染及控制研究进展[J]. 中国人口·资源与环境,2010,20(1):99-107.]
    [50] Li H P,Yang G S,Huang W Y,et al. Simulating fluxes of non-point source nitrogen from upriver region of Taihu Basin[J]. Acta Pedologica Sinica,2007,44(6):1063-1069. [李恒鹏,杨桂山,黄文钰,等. 太湖上游地区面源污染氮素入湖量模拟研究[J]. 土壤学报,2007,44(6):1063-1069.]
    [51] Wu Y H,Hu Z Y,Yang L Z. Strategies for controlling agricultural non-point source pollution:Reduce-retain- restoration(3R)theory and its practice[J]. Transactions of the Chinese Society of Agricultural Engineering,2011,27(5):1-6. [吴永红,胡正义,杨林章. 农业面源污染控制工程的“减源-拦截-修复”(3R)理论与实践[J]. 农业工程学报,2011,27(5):1-6.]
    [52] Li C Z,Xu X J,Ma H B,et al. Research advances in fertigation technology improving water and fertilizer use efficiency[J]. Jiangsu Journal of Agricultural Sciences,2017,33(2):469-475. [李传哲,许仙菊,马洪波,等. 水肥一体化技术提高水肥利用效率研究进展[J]. 江苏农业学报,2017,33(2):469-475.]
    [53] Liu Z H,Wu X B,Tan D S,et al. Application and environmental effects of one-off fertilization technique in major cereal crops in China[J]. Scientia Agricultura Sinica,2018,51(20):3827-3839. [刘兆辉,吴小宾,谭德水,等. 一次性施肥在我国主要粮食作物中的应用与环境效应[J]. 中国农业科学,2018,51(20):3827-3839.]
    [54] Sun H J,Min J,Shi W M,et al. Effects of nitrification inhibitor on rice production and ammonia volatilization in paddy rice field[J]. Soils,2015,47(6):1027-1033. [孙海军,闵炬,施卫明,等. 硝化抑制剂施用对水稻产量与氨挥发的影响[J]. 土壤,2015,47(6):1027-1033.]
    [55] Jiang Z C,Min J,Lu Z X,et al. Effects of mechanical ridging and lateral and band fertilization on yield and ammonia volatilization in Chinese cabbage production[J]. Soils,2020,52(1):10-15. [姜振萃,闵炬,陆志新,等. 机械起垄侧条施肥对大白菜产量和氨挥发的影响[J]. 土壤,2020,52(1):10-15.]
    [56] Chen G,Chen Y,Zhao G H,et al. Do high nitrogen use efficiency rice cultivars reduce nitrogen losses from paddy fields?[J]. Agriculture,Ecosystems & Environment,2015,209:26-33.
    [57] Chen J,Wu Y C,Chen L P,et al. Economic benefit analysis of variable-rate fertilization technology in maize(Zea mays)field based on partial budget analysis method[J]. Transactions of the Chinese Society of Agricultural Engineering,2017,33(19):141-146. [陈静,吴永常,陈立平,等. 基于部分预算法的玉米大田变量施肥经济效益分析[J]. 农业工程学报,2017,33(19):141-146.]
    [58] Jiang A N,Huang W J,Zhao C J,et al. Effects of variable nitrogen application based on characteristics of canopy light reflectance in wheat[J]. Scientia Agricultura Sinica,2007,40(9):1907-1913. [蒋阿宁,黄文江,赵春江,等. 基于光谱指数的冬小麦变量施肥效应研究[J]. 中国农业科学,2007,40(9):1907-1913.]
    [59] Jia K,Liu J L,Shen B. Yield effect change of fertilizers in the past 14 years and optimized fertilization of winter wheat in north of China[J]. Journal of Plant Nutrition and Fertilizers,2020,26(11):2032-2042. [贾可,刘建玲,沈兵. 近14年北方冬小麦肥料产量效应变化及优化施肥方案[J]. 植物营养与肥料学报,2020,26(11):2032-2042.]
    [60] Wu Y,Liu J,Rene E R. Periphytic biofilms:A promising nutrient utilization regulator in wetlands[J]. Bioresource Technology,2018,248:44-48.
    [61] Jiang Z X,Cui S,Zhang X,et al. Influence of biochar application on soil nitrate leaching and phosphate retention:A synthetic meta-analysis[J]. Environmental Science,2022,43(10):4658-4668. [姜志翔,崔爽,张鑫,等. 基于Meta-analysis的生物炭对土壤硝态氮淋失和磷酸盐固持影响[J]. 环境科学,2022,43(10):4658-4668.]
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

施卫明,王远,闵炬.中国农业面源污染防控研究进展与工程案例[J].土壤学报,2023,60(5):1309-1323. DOI:10.11766/trxb202307310301 SHI Weiming, WANG Yuan, MIN Ju. Progress in Research and Engineering Application Cases of Agricultural Non-Point Source Pollution Control in China[J]. Acta Pedologica Sinica,2023,60(5):1309-1323.

复制
分享
文章指标
  • 点击次数:834
  • 下载次数: 2445
  • HTML阅读次数: 2648
  • 引用次数: 0
历史
  • 收稿日期:2023-07-31
  • 最后修改日期:2023-09-11
  • 录用日期:2023-09-15
  • 在线发布日期: 2023-09-15
  • 出版日期: 2023-09-28
文章二维码