原子力显微镜原位探测铵态氮对沉淀态钙磷的溶解动力学
作者:
中图分类号:

S158.5

基金项目:

国家重点研发计划项目(2023YFD19011)资助


In situ Dissolution Kinetics of Ammonium Nitrogen Interacting with Precipitated Calcium Phosphate Determined by Atomic Force Microscopy
Author:
Fund Project:

Supported by the National Key Research and Development Program of China (No.2023YFD1901100)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [33]
  • |
  • 相似文献 [15]
  • | | |
  • 文章评论
    摘要:

    现代农业对磷肥的过度施用导致了其在集约农田中的大量累积,且大部分以枸溶性和难溶性的沉淀态存在,因此提高沉淀态磷的有效性是磷肥高效利用的关键。目前,大量宏观的田间试验已揭示了氮肥对磷肥的活化具有促进效应。然而,微纳尺度上氮肥和沉淀态磷肥相互作用的原位研究仍然缺乏。本研究选用土壤中常见的磷酸钙矿物(磷酸氢钙(DCPD)、羟基磷灰石(HAP))作为供试材料,设置5个浓度氯化铵(0.5、5、50、500、1 000 mmol·L-1)为氮源,利用原位原子力显微镜原位观察了不同氮肥添加水平下,DCPD和HAP的表面溶解动力学。结果表明,氯化铵的添加驱动DCPD表面以三角形蚀坑的形式迅速溶解,且随着添加浓度的提高,DCPD表面溶解速率显著增强。结合DCPD表面溶解的定量表征,发现随着氯化铵浓度从0.5 mmol·L-1增至1 000 mmol·L-1,溶出磷的质量从27.00 mg·kg-1显著增至145.0 mg·kg-1。对于HAP而言,即使氯化铵浓度增至1 000 mmol·L-1,HAP表面形貌几乎不变,未出现明显溶解,且溶出磷的质量仅为5.00 mg·kg-1,与超纯水溶出磷的质量相当(3.00 mg·kg-1)。分子水平的动力学力谱结果表明,铵根阳离子和DCPD之间的相互作用力(230.6 pN)显著大于其与HAP之间的相互作用力(154.0 pN)。这表明铵根阳离子在不同磷酸钙表面的结合强度差异显著,造成矿物表面水化层不同程度的破坏,从而带来矿物表面溶解的显著差异。本研究在纳米尺度原位表征了磷酸钙表面溶解动力学,并揭示了氯化铵调控其表面溶解的分子机制,为氮磷配施增强土壤供磷能力提供了直接依据。

    Abstract:

    【Objective】 The increase in global food demand and the consumption of phosphorus(P) fertilizer in modern agriculture have caused P accumulation in extensively managed croplands. Most of the accumulated P deposits exist in sparingly soluble or insoluble species, leading to their low availability, which is almost impossible to use directly by plants or microorganisms. Therefore, improving the utilization of soil accumulated P is not only one of the effective ways to enhance the utilization efficiency of P fertilizers but also relieves the increasing tension of P resources. At present, a large number of macroscopic field experiments have revealed the synergistic promoting effect of nitrogen (N) on P activation and uptake. However, in the N and P interaction, in-situ observation of dissolved N interacting with precipitated P has been lacking. 【Method】 Herein, Ca-P precipitates with different solubilities, namely sparingly soluble (DCPD) and insoluble (HAP), were selected as test materials. Taking aqueous solution as control, five NH4Cl concentrations (0.5, 5, 50, 500, 1, 000 mmol·L-1) were set as N sources. The in-situ dissolution kinetics of DCPD and HAP at different N levels were directly observed by atomic force microscopy (AFM). AFM-based dynamic force spectroscopy (DFS) technique was employed to characterize the interaction between ammonium cations and DCPD/HAP surfaces at the molecular scale. 【Result】 The result showed that the surface dissolved immediately, accompanied by the formation of triangular etch pits, following the addition of NH4Cl. When increasing the NH4Cl concentration, the surface dissolution rate of DCPD was significantly promoted. The quantitative results further exhibited the dissolved P mass was significantly increased from 27.00 mg·kg-1 to 145.0 mg·kg-1 with the increase of NH4Cl concentration from 0.5 mmol·L-1 to 1 000 mmol·L-1. By contrast, the surface morphology of HAP almost remained constant without obvious dissolution even if the NH4Cl concentration was up to 1 000 mmol·L-1. The dissolved P mass was 5.00 mg·kg-1, which was not significant compared with the dissolved P mass of 3.00 mg·kg-1 in aqueous solution. AFM-based DFS results showed that the interaction force between ammonium cations and DCPD (230.6 pN) was significantly greater than that between ammonium cations and HAP (154.0 pN). Due to the difference in binding strength of ammonium cations on Ca-P surfaces at the molecular level, the hydration layer of mineral surfaces is destroyed at different degrees. As a result, the surface dissolution kinetics of DCPD and HAP were significantly different when regulated by ammonium cations. 【Conclusion】 This research provides method guidance for in-situ observation of nanoscale dissolution kinetics of different Ca-P minerals. It also illustrates the enhanced interface dissolution on negatively charged DCPD induced by ammonium cation to release available P, thus improving the continuous P supply capacity in soils.

    参考文献
    [1] Shi W, Zhang L M, Wang J S, et al. The subsequent effects of phosphorus fertilization in upland red soils and the underlying mechanisms[J]. Acta Pedologica Sinica, 2022, 59(4): 1100-1111.[石伟, 张丽梅, 王劲松, 等. 磷肥在旱地红壤上的后期效应及其作用机制[J]. 土壤学报, 2022, 59(4): 1100-1111.]
    [2] Wang X, Li H G, Cheng L Y, et al. Advances of root-soil interface effect of phosphorus and water interaction and mechanisms of their efficient use[J]. Journal of Plant Nutrition and Fertilizer, 2017, 23(4): 1054-1064.[王昕, 李海港, 程凌云, 等. 磷与水分互作的根土界面效应及其高效利用机制研究进展[J]. 植物营养与肥料学报, 2017, 23(4): 1054-1064.]
    [3] Xian J T, Chen X B, Wang S, et al. Phosphorus availability in saline soil:A review[J]. Soils, 2023, 55(3): 474-486.[咸敬甜, 陈小兵, 王上, 等. 盐渍土磷有效性研究进展与展望[J]. 土壤, 2023, 55(3): 474-486.]
    [4] Niu B, Wang Y L. Retention capacity and release potential of soil phosphorus in paddy red soil pedogenic horizons with different planting years[J]. Acta Pedologica Sinica, 2023, 60(6): 1724-1736.[牛犇, 王艳玲. 不同年限稻田红壤发生层土壤磷的固持容量及其释放潜能研究[J]. 土壤学报, 2023, 60(6): 1724-1736.]
    [5] Wang L, Wang Y L, Li H, et al. Redundancy analysis of influencing factors of phosphorus availability in red soil upland under long-term fertilization[J]. Soil and Fertilizer Sciences in China, 2021(1): 17-25.[王蕾, 王艳玲, 李欢, 等. 长期施肥下红壤旱地磷素有效性影响因子的冗余分析[J]. 中国土壤与肥料, 2021(1): 17-25.]
    [6] Cai G, Hu Y J, Wang T T, et al. Characteristics and influencing factors of biologically-based phosphorus fractions in the farmland soil[J]. Environmental Science, 2017, 38(4): 1606-1612.[蔡观, 胡亚军, 王婷婷, 等. 基于生物有效性的农田土壤磷素组分特征及其影响因素分析[J]. 环境科学, 2017, 38(4): 1606-1612.]
    [7] Yang J, Xin X L, Zhong X Y, et al. Effects of long-term fertilization on phosphorus adsorption characteristics of fluvo-aquic soils[J]. Acta Pedologica Sinica, 2023, 60(4): 1047-1057.[杨娇, 信秀丽, 钟新月, 等. 长期不同施肥对潮土磷素吸附特征的影响[J]. 土壤学报, 2023, 60(4): 1047-1057.]
    [8] Li H, Fan H L, Zhang J M, et al. The phosphorus storage capacity and phosphorus loss risk of red soil profiles in sloping farmland[J]. Acta Pedologica Sinica, 2024, 61(1): 98-109.[李欢, 樊慧琳, 张佳敏, 等. 坡耕地红壤剖面磷的储存容量及其流失风险研究[J]. 土壤学报, 2024, 61(1): 98-109.]
    [9] Bi Q F. Different fertilization modes and cultivation years affect soil phosphorus availability and carbon- nitrogen-phosphorus coupling transformations and their microbial mechanisms[D].Hangzhou:Zhejiang University, 2020.[毕庆芳. 施肥模式和耕作年限影响土壤磷有效性和碳氮磷耦合转化的微生物学机制[D]. 杭州:浙江大学, 2020.]
    [10] Du J X, Liu K L, Huang J, et al. Spatio-temporal evolution characteristics of soil available phosphorus and its response to phosphorus balance in paddy soil in China[J]. Acta Pedologica Sinica, 2021, 58(2): 476-486.[都江雪, 柳开楼, 黄晶, 等. 中国稻田土壤有效磷时空演变特征及其对磷平衡的响应[J]. 土壤学报, 2021, 58(2): 476-486.]
    [11] Liu X Y, Yang J S, Tao J Y, et al. Elucidating the effect and interaction mechanism of fulvic acid and nitrogen fertilizer application on phosphorus availability in a salt-affected soil[J]. Journal of Soils and Sediments, 2021, 21(7): 2525-2539.
    [12] Hao Y H. Effects of long-term nitrogen and phosphorus addition on soil carbon, nitrogen, phosphorus and bacterial characteristics in farmland of Loess Plateau[D].Xi'an:Shaanxi Normal University, 2017.[郝亚辉. 长期氮磷添加对黄土旱塬农田土壤碳氮磷及细菌特征的影响[D]. 西安:陕西师范大学, 2017.]
    [13] Jiao Y P, Qi P, Wang X J, et al. Effects of nitrogen and phosphorus fertilization on inorganic phosphorus forms of typical farmland soil in the dry farming area of the Loess Plateau[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(8): 1459-1472.[焦亚鹏, 齐鹏, 王晓娇, 等. 氮磷配施对黄土高原旱作农业区典型农田土壤无机磷形态的影响[J]. 植物营养与肥料学报, 2020, 26(8): 1459-1472.]
    [14] Zhu L X, Yue S C, Shen Y F, et al. Effects of nitrogen fertilization and film mulching on soil microbial biomass and enzyme activity of spring maize in semi-arid cropland[J]. Agricultural Research in the Arid Areas, 2019, 37(1): 130-136.[朱利霞, 岳善超, 沈玉芳, 等. 施氮和覆膜对旱作春玉米农田土壤微生物量和土壤酶活性的影响[J]. 干旱地区农业研究, 2019, 37(1): 130-136.]
    [15] Zhang X, Xing Y, Liu Z X, et al. Effects of combined application of nitrogen and phosphorus fertilizer on apple rootstock seedling growth, soil inorganic phosphorus forms and phosphorus utilization[J]. Journal of Soil and Water Conservation, 2021, 35(4): 237-242.[张鑫, 邢玥, 刘照霞, 等. 氮磷配施对苹果幼苗生长、土壤无机磷形态和磷素利用的影响[J]. 水土保持学报, 2021, 35(4): 237-242.]
    [16] Ge X F, Fan Y K, Zhai H, et al. Direct observations of nanoscale brushite dissolution by the concentration- dependent adsorption of phosphate or phytate[J]. Water Research, 2024, 248:120851.
    [17] Newcomb C J, Qafoku N P, Grate J W, et al. Developing a molecular picture of soil organic matter-mineral interactions by quantifying organo-mineral binding[J]. Nature Communications, 2017, 8(1): 396.
    [18] Ge X F, Zhang W J, Putnis C V, et al. Molecular mechanisms for the humic acid-enhanced formation of the ordered secondary structure of a conserved catalytic domain in phytase[J]. Physical Chemistry Chemical Physics, 2022, 24(7): 4493-4503.
    [19] Ge X F, Wang L J, Zhang W J. Molecular-scale determination of facet- and adsorbent-dependent phosphate adsorption by metal-based adsorbents[J]. Environmental Science:Nano, 2022, 9(9): 3372-3384.
    [20] Ge X F, Zhang W J, Putnis C V, et al. Direct observation of humic acid-promoted hydrolysis of phytate through stabilizing a conserved catalytic domain in phytase[J]. Environmental Science:Processes & Impacts, 2022, 24(7): 1082-1093.
    [21] Qin L H, Wang L J, Wang B S. Role of alcoholic hydroxyls of dicarboxylic acids in regulating nanoscale dissolution kinetics of dicalcium phosphate dihydrate[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(5): 3920-3928.
    [22] Ge X F, Wang L J, Yang X, et al. Alginate promotes soil phosphorus solubilization synergistically with redox- active antibiotics through Fe(III) reduction[J]. Environmental Science:Nano, 2022, 9(5): 1699-1711.
    [23] Ruiz-Agudo E, Kowacz M, Putnis C V, et al. The role of background electrolytes on the kinetics and mechanism of calcite dissolution[J]. Geochimica et Cosmochimica Acta, 2010, 74(4): 1256-1267.
    [24] Espanol M, Mestres G, Luxbacher T, et al. Impact of porosity and electrolyte composition on the surface charge of hydroxyapatite biomaterials[J]. ACS Applied Materials & Interfaces, 2016, 8(1): 908-917.
    [25] Ruiz-Agudo E, Urosevic M, Putnis C V, et al. Ion-specific effects on the kinetics of mineral dissolution[J]. Chemical Geology, 2011, 281(3/4): 364-371.
    [26] Qin L H, Zhang W J, Lu J W, et al. Direct imaging of nanoscale dissolution of dicalcium phosphate dihydrate by an organic ligand:Concentration matters[J]. Environmental Science & Technology, 2013, 47(23): 13365-13374.
    [27] Zhang F S, Huang C D, Shen J B, et al. Green intelligent fertilizer:New insight into making full use of mineral nutrient resources and industrial approach[J]. Acta Pedologica Sinica, 2023, 60(5): 1203-1212.[张福锁, 黄成东, 申建波, 等. 绿色智能肥料:矿产资源养分全量利用的创新思路与产业化途径[J]. 土壤学报, 2023, 60(5): 1203-1212.]
    [28] Zhang Q S. Nitrogen, phosphorus and potassium nutrient balance and optimization approaches of major crops in China[D]. Beijing:China Agricultural University, 2021.[张青松. 中国主要作物氮磷钾养分平衡与优化途径[D]. 北京:中国农业大学, 2021.]
    [29] Zhang W, Chen X J, Ma L, et al. Re-prediction of phosphate fertilizer demand in China based on agriculture green development[J]. Acta Pedologica Sinica, 2023, 60(5): 1389-1397.[张伟, 陈轩敬, 马林, 等. 再论中国磷肥需求预测——基于农业绿色发展视角[J]. 土壤学报, 2023, 60(5): 1389-1397.]
    [30] Cheng Y L, Cheng X L, Zou D Y. Long-term located fertilizer experiments after 15-years in brown soil forms and availability of phosphate nutrient[J]. Chinese Journal of Soil Science, 2009, 40(6): 1362-1366.[程艳丽, 程希雷, 邹德乙. 棕壤长期定位施肥15年后磷素形态及有效性[J]. 土壤通报, 2009, 40(6): 1362-1366.]
    [31] Zhao H M, Wang S Q, Zhao X, et al. Visual analysis for soil C, N and P interaction based on citespace analysis[J]. Soils, 2022, 54(4): 682-690.[赵洪猛, 王慎强, 赵旭, 等. 基于Citespace的土壤碳氮磷交互研究可视化分析[J]. 土壤, 2022, 54(4): 682-690.]
    [32] Ge X F, Wang L J, Zhang W J, et al. Molecular understanding of humic acid-limited phosphate precipitation and transformation[J]. Environmental Science & Technology, 2020, 54(1): 207-215.
    [33] Ge X F, Wang L J, Zhang W J. Direct observation of alginate-promoted soil phosphorus availability[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(24): 8011-8021.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

葛新飞,张文君.原子力显微镜原位探测铵态氮对沉淀态钙磷的溶解动力学[J].土壤学报,2025,62(1):92-101. DOI:10.11766/trxb202309210395 GE Xinfei, ZHANG Wenjun.In situ Dissolution Kinetics of Ammonium Nitrogen Interacting with Precipitated Calcium Phosphate Determined by Atomic Force Microscopy[J]. Acta Pedologica Sinica,2025,62(1):92-101.

复制
分享
文章指标
  • 点击次数:129
  • 下载次数: 991
  • HTML阅读次数: 214
  • 引用次数: 0
历史
  • 收稿日期:2023-09-21
  • 最后修改日期:2024-03-15
  • 录用日期:2024-05-31
  • 在线发布日期: 2024-06-14
文章二维码