缙云山两种森林表层土壤胡敏酸的性质及凝聚特征研究
作者:
中图分类号:

S153.3

基金项目:

国家自然科学基金项目(41501241)、重庆市自然科学基金项目(cstc2020jcyj-msxmX0467)和西南大学青年团队专项基金项目(Swu-xjpy202303)资助


Properties and Aggregation Characteristics of Humic Acid in Surface Soil under Two Forest Vegetations of Jinyun Mountain
Author:
Fund Project:

Supported by the National Natural Science Foundation of China (No. 41501241), the Natural Science Foundation of Chongqing, China (No. cstc2020jcyj-msxmX0467) and the Special Fund for Youth Team of the Southwest University, China (No. Swu-xjpy202303)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [22]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    区域土壤的植被覆盖类型影响着胡敏酸(HA)的数量、质量和组成,进一步影响其凝聚特性。以重庆缙云山竹林(海拔580 m)和阔叶林(海拔280 m)表层土壤HA为研究对象,采用元素分析、热重分析(TG)和傅里叶红外光谱分析(FTIR)表征其结构特性,结合动态光散射(DLS)和ζ电位测定,比较研究了Na+、Mg2+、Ca2+离子引发两种HA胶体凝聚的动力学特征。结果发现,竹林土壤HA具有更高的碳氮比(C/N)和碳氢比(C/H)、更强的热稳定性以及更多的芳香性红外吸收谱带,意味着竹林土壤HA结构更复杂、芳香性官能团更多,因此竹林土壤HA腐殖化程度更高。光散射研究结果表明,竹林土壤HA凝聚需要的Na+、Mg2+、Ca2+的临界聚沉浓度分别为1 097.9 mmol·L-1、8.6 mmol·L-1、5.1 mmol·L-1;阔叶林土壤HA在Na+体系中不凝聚,在Mg2+、Ca2+体系中的临界聚沉浓度分别为80.7 mmol·L-1和20.2 mmol·L-1。竹林土壤HA的ζ电位远低于阔叶林土壤HA,具体表现为:竹林土壤HA的ζ电位绝对值是阔叶林土壤HA的3.43倍,可用于解释二者凝聚特征的差异;竹林土壤HA对三种阳离子的敏感程度远高于阔叶林土壤HA,能够快速形成有效粒径更大的凝聚体。覆盖植被类型的改变会引起表层土壤中HA性质差异,高海拔竹林土壤HA腐殖化程度更高,对土壤溶液中阳离子的敏感程度也更强烈。研究结果对深入理解有机物质输入土壤后HA的形成及稳定性具有重要作用。

    Abstract:

    【Objective】 Soil organic carbon (SOC) pool, the largest C pool in terrestrial ecosystems, can achieve long-term C sequestration. SOC plays a vital role in the global C cycle and is a key link in achieving C peaking and C neutrality goals. Humic acid (HA) is one of the most important and more stable components of soil organic matter, representing a more stable soil C pool. The vegetation coverage type of regional soil affects the quantity, quality and composition of HA, and further affects its aggregation characteristics. In this study, HA in surface soil under bamboo forest (Altitude 580 m) and broad-leaved forest (Altitude 280 m) in Jinyun Mountain, Chongqing, was taken as the research object, and then surface properties and aggregation characteristics of these two HA were clarified. 【Method】 The structural characteristics were evaluated by element analysis, thermal gravimetric analysis, and Fourier infrared spectroscopy. Combined with dynamic light scattering and zeta potential measurement, the aggregation kinetic characteristics of these two HA colloids induced by Na+, Mg2+ and Ca2+ were studied and compared. 【Result】 It was found that HA in bamboo forest soil had higher C/N, C/H, stronger thermal stability and aromatic infrared absorption characteristic spectra, indicating HA in bamboo forest soil had more aromatic functional groups, more complex structure, and higher humification degree. The results of dynamic light scattering showed that the critical coagulation concentrations of Na+, Mg2+, and Ca2+ for the HA colloids of bamboo forest soil were 1 097.9 mmol·L-1, 8.6 mmol·L-1, and 5.1 mmol·L-1, respectively. The HA colloids of broad-leaved forest soil did not aggregate in the Na+ system, and the critical coagulation concentrations in Mg2+ and Ca2+ systems were 80.7 mmol·L-1 and 20.2 mmol·L-1, respectively. The zeta potential of HA in bamboo forest soil was much lower than that in broad-leaved forest soil. The absolute value of the zeta potential of HA in bamboo forest soil was 3.43 times that of HA in broad-leaved forest soil, which could be used to explain the difference in aggregation characteristics between the two. The sensitivity of the HA in bamboo forest soil to three cations is much higher than that of HA in broad-leaved forest soil, which can quickly aggregate and form larger particle sizes. 【Conclusion】 The change of coverage vegetation types will cause the corresponding change of HA properties in surface soil. The humification degree of HA in high-altitude bamboo forest soil is higher, and the sensitivity to cations is also higher. The results of this study provide an important reference for understanding the formation and stability of HA after organic matter input into soil.

    参考文献
    [1] Wu W X, Huang C H, Tang Z R, et al. Response of electron transfer capacity of humic substances to soil microenvironment[J]. Environmental Research, 2022, 213:113504.
    [2] Ai S, Meng X, Zhang Z, et al. Artificial humic acid regulates the impact of fungal community on soil macroaggregates formation[J]. Chemosphere, 2023, 332:138822.
    [3] López R, Gondar D, Iglesias A, et al. Acid properties of fulvic and humic acids isolated from two acid forest soils under different vegetation cover and soil depth[J]. European Journal of Soil Science, 2008, 59(5): 892-899.
    [4] Audette Y, Smith D S, Parsons C T, et al. Impact of hydrofluoric acid treatment on humic acid properties extracted from organic soils and an organic amendment:A technical evaluation[J]. Soil Science Society of America Journal, 2019, 83(4): 1219-1226.
    [5] Ndzelu B S, Dou S, Zhang X W, et al. Tillage effects on humus composition and humic acid structural characteristics in soil aggregate-size fractions[J]. Soil and Tillage Research, 2021, 213:105090.
    [6] Bayranvand M, Kooch Y, Hosseini S M, et al. Humus forms in relation to altitude and forest type in the Northern mountainous regions of Iran[J]. Forest Ecology and Management, 2017, 385(4): 78-86.
    [7] de Melo B A G, Motta F L, Santana M H A. Humic acids:Structural properties and multiple functionalities for novel technological developments[J]. Materials Science and Engineering:C, 2016, 62:967-974.
    [8] Hakim A, Suzuki T, Kobayashi M. Strength of humic acid aggregates:Effects of divalent cations and solution pH[J]. ACS Omega, 2019, 4(5): 8559-8567.
    [9] Zhang Y, He A, Tian R, et al. Co-aggregation of mixture components of montmorillonite, kaolinite and humus[J]. European Journal of Soil Science, 2022, 73(1): e13158.
    [10] Tian R, Liu X M, Gao X D, et al. Observation of specific ion effects in humus aggregation process[J]. Pedosphere, 2021, 31(5): 736-745.
    [11] Ai Y, Zhao C, Sun L, et al. Coagulation mechanisms of humic acid in metal ions solution under different pH conditions:A molecular dynamics simulation[J]. Science of the Total Environment, 2020, 702:135072.
    [12] Petrov D, Tunega D, Gerzabek M H, et al. Molecular dynamics simulations of the standard leonardite humic acid:Microscopic analysis of the structure and dynamics[J]. Environmental Science & Technology, 2017, 51(10): 5414-5424.
    [13] Kang S, Xing B. Phenanthrene sorption to sequentially extracted soil humic acids and humins[J]. Environmental Science & Technology, 2005, 39(1): 134-140.
    [14] Boguta P, Sokołowska Z, Skic K. Use of thermal analysis coupled with differential scanning calorimetry, quadrupole mass spectrometry and infrared spectroscopy(TG-DSC-QMS-FTIR) to monitor chemical properties and thermal stability of fulvic and humic acids[J]. PLoS One, 2017, 12(12): e0189653.
    [15] Chen X D, Wu J G, Li J M, et al. Structural characteristics of humic acid in primary saline-alkali soil as affected by application of organic materials[J]. Acta Pedologica Sinica, 2020, 57(3): 702-709.[陈晓东, 吴景贵, 李建明, 等. 有机物料施用下原生盐碱土胡敏酸结构特征[J]. 土壤学报, 2020, 57(3): 702-709.]
    [16] Tang J, Zhu X, Liu X T, et al. Hofmeister effects of 2:1 and 1:1 clay minerals in agglomeration:A comparative study[J]. Acta Pedologica Sinica, 2020, 57(2): 381-391.[唐嘉, 朱曦, 刘秀婷, 等. 2:1和1:1型黏土矿物胶体凝聚中Hofmeister效应的比较研究[J]. 土壤学报, 2020, 57(2): 381-391.]
    [17] Zhang Y, Tian R, Tang J, et al. Specific ion effect of H+ on variably charged soil colloid aggregation[J]. Pedosphere, 2020, 30(6): 844-852.
    [18] Tsozué D, Nghonda J P, Tematio P, et al. Changes in soil properties and soil organic carbon stocks along an elevation gradient at Mount Bambouto, Central Africa[J]. Catena, 2019, 175:251-262.
    [19] Li Y H, Zhang Y Q, Chang L P, et al. Analyses on thermal stability of lignites and its derived humic acids[J]. Energy Sources, Part A:Recovery, Utilization, and Environmental Effects, 2020(4): 1-12.
    [20] Volkov D S, Rogova O B, Proskurnin M A, et al. Thermal stability of organic matter of typical chernozems under different land uses[J]. Soil and Tillage Research, 2020, 197:104500.
    [21] Liang M R, Lu Y F, Ma M K, et al. Adsorption of atrazine, carbendazim and acetamiprid from aqueous solution by sawdust biochar[J]. Soils, 2022, 54(4): 793-801.[梁茂儒, 陆玉芳, 马明坤, 等.攠洨楑猟瑩爨禭?????ドㄥ????水???ㄍ???五????????????拤爬?嬲??崲?匠椵渴木栴?为??吹椳眭愸爰椱?????栾慛渲搲敝氠睗慡汮?丠????敨瑵?慙氠??唠湘摵攠牌猠瑚愬渠摥楴渠条?琮栠故?獦瑥慣扴楳氠楯瑦礠?潩景?湨慡湲潳瀠污慰獰瑬楩捣獡?楩湯?愠煯畮攠潨畵獭?敳渠癣楯牭潰湯浳敩湴瑩??映晡敮捤琠?潡晴?楲漭湳楴捡?獬瑥爠敡湧杧瑲桥??瑴敥浳瀠敤物慳瑴畲物敢??摩楯獮猠潯汦瘠敢摬?潣牫朠慳湯楩捬?浊慝琮琠敓牯??捳氬愠礲?′愳測搠‵栵攨愳瘩示?洶攰琵愭氶猱嬱?嵛???渠瘱榹狪漬渠涸旞湨琬愠汉?匠掽椨攟湩挨断?仑感湐澖???ナ??????ㄆ〃??????????????戲爳?嬠?特崨″圩町?堶?‵堭椶愱?央??奢畲愾湛′???敒瑡?慵汲???潓氬攠捋畡汳慩牭?摓礬渠慊浡楡捦獡?猠楎洠畍氬愠瑥楴漠湡?漮映?琠档敯?楰湡瑲敡牴慩捶瑥椠潳湴?扤敹琠睯敦攠湴?捡漠海浡潳湴?洠敤瑥慲汩?楥潤渠獨?慭湩摣?桬畩浫楥挠?慵换楳摴獡孮?嵥??坷慩瑴敨爠???の?ぴ????????????ねど??扳牵?孳??嵮?剥敳渠????剨敥湭?塣???档敯湭????整瑩?慮氬???略浣楴捲?浳楣湯数物慣氠?楲湯瑰敥牲慴捩瑥楳漠湡獮?洠潢摩畯汬慯瑧敩摣?扬礠?灣??捶潩湴摹楛瑊楝漮渠獅?楶湩?扯慮畭硥楮瑴敡?爠敓獣楩摥畮散獥???浤瀠汐楯捬慬瑵楴潩湯獮?楒湥?獥瑡慲扣汨攬?愲朰朲爲攬朠愲琹攨?昰漩爺洠愶琰椶漳渱嬭?崰???攮漼摢敲爾浛愲??㈠が?ㄠ???????ㄠ??????执爠?嬮??嵮?坩畧?却???楴畯?????楡?塩??敳琠?慦氠???牶敹攠穭敥?瑡桬愭睩?捤潵湣瑥牤漠汮污整摵?慡杬朠牣敬条慹琠楡潧湧?浥敧捡桴慩湯楮獛浊?漮映?桰異浬楩捥?愠捃楬摡?挠潓慣瑩敥摮?来漬攠琲栰椲琳攬??洳瀱氺椱挰愶琷椴漶渮猼?晲漾牛′漵牝朠慑湵楩捤?捡慵爠打漠湁?瀠牃敨獡敤牷癩慣瑫椠潏渠孁?崠???敥潳摩攠牁洬愠??㈠ち?金???つ??????????戠牢?孴??嵥?堠畦?婲??乴椠當?婧??偡慴湩????敹瑰?愠污???敳捯桩慬渠楯獲浧獡?潩晣?扭敡湴瑴潥湲椠瑣敯?捰潯汳汩潴楩摯?慛杊杝爮攠杇慥瑯楤潥湲??爬攠琲攰渰琱椬漠渱??愨渱搯′爩攺氠攴愱猭收‰椮渼?獲愾瑛甲父慝琠敂摯?火潯爠潏甬猠?浡敢摡楬慡?剃漮氠敔?潡普?捦潯畲湭瑡整物?楮漠湯獦?慰湨摹?桩畣浯楣捨?慭捩楣摡孬?嵳??卬挠楰敲湯捰敥?潴晩?瑳栠敡?呯潮瑧愠污??湯癵楮牴潡湩浮攠湳瑬????????????????????执牥?孥??崠??慤眠慣桬楩杭慡獴桥椠?????略橳椭瑁愠正敡?乥??却畵牤晹愠捦敲?慭挠瑴楨癥攠?灡牲潫灯敮牯瑳楚敥猠?潯晵?灴慡物瑮楳挬氠敓?猠楐穯敬?普牤慛捊瑝椮漠湃獡?楥湮?琬眠漲‰栱甶洬椠挱?愰挺椴搳猭嬵?崮??卲漾楛氲?卝挠楊敩湮捤敯?態測搠?倦氣愲渲琵※乮畣瑨牥楺琭楍潯湮????????????????????????扥牴?孡??崠??桥攠湥?奦???慥潮?兹???栠敡渠?坯??敤瑯?慥氠????浩敯捣桨慡湲椠獩瑮椠捥?獨瑡畮摣祩?潧映?獨瑥愠扡汲敯?摡楴獩灣敩牴獹椠潯湦?潨晵?瑩楣琭慬湩楫略洠?潵硢楳摴敡?湣慥渠潥灸慴牲瑡楣捴汥敤猠?扲祯?栠異浯極捬?慲捹椠摭孡?嵵??圠慣瑯敭牰?剳整獛敊慝爮挠桁???の????ㄠ??????????戺爠?嬴??崼??栾潛琲稸敝渠?剡????偩漠汅甬戠敐獡潧癨慡?呥???栠敓昬攠瑋穩????敨瑲?慍氠???摥獴漠牡灬琮椠潃湨?潭晩?獡潬椬氠?摰敥牣楴癲敡摬?桡畮浤椠捭?慲捰楨摯?扯祧?獣敡癬攠湣?捡汲慡祣?浥楲湩敺牡慴汩獯???獦礠獨瑵敭浩慣琠楡捣?獤瑳甠摥祸孴?嵡???汤愠祡獮?愠湭摥??汲慡祮??楰湵敲物慦汩獥???ひ????????????????????扳牴?孹??崠?婨桥慭潩?????慥瑣桨敮睯?副????夲愰渲朰???匴?″攩琺?愳氵??丳愶琱甮爼慢汲 ̄潛爲朹慝渠楍捡?浥慲琠瑍攬爠?晲污潵捳捥甠汈愠瑍椬漠湆?扩敥桳慳癢楡潣牨?捁漬渠瑥牴漠污獬?氠敆慥摲?灩桬潩獺灥桲愠瑱敵?灬慩牴瑹椠捡汮敤?慬条杢物敬来愠瑳楯潩湬?扯祲?浡潮湩潣?慭湡摴?摥楲瘠慦汲敡湣瑴?捯慮瑳椠潡湲獥嬠?嵩??卬挠楦敯湲挠敯?潧晡?瑩档攠?呡潲瑢慯汮??湥癱極牥潳湴浲敡湴瑩??㈠ど???????????????ble soils within a long-term trial in Switzerland[J]. Geoderma, 2022, 426:116080.
    [30] Li Q, Yang S, Tang Y, et al. Asymmetric hybridization orbitals at the charged interface initiates new surface reactions:A quantum mechanics exploration[J]. The Journal of Physical Ch
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

毕琳娜,田锐.缙云山两种森林表层土壤胡敏酸的性质及凝聚特征研究[J].土壤学报,2025,62(1):102-113. DOI:10.11766/trxb202309280403 BI Linna, TIAN Rui. Properties and Aggregation Characteristics of Humic Acid in Surface Soil under Two Forest Vegetations of Jinyun Mountain[J]. Acta Pedologica Sinica,2025,62(1):102-113.

复制
分享
文章指标
  • 点击次数:100
  • 下载次数: 665
  • HTML阅读次数: 345
  • 引用次数: 0
历史
  • 收稿日期:2023-09-28
  • 最后修改日期:2024-09-28
  • 录用日期:2024-02-27
  • 在线发布日期: 2024-02-28
文章二维码