稻油复种不同措施下土壤有机碳组分积累及其稳定性特征
作者:
基金项目:

国家自然科学基金青年基金项目(42207409)、湖南省重点研发计划项目(2022NK2009)和湖南省自然科学基金青年基金项目(2022JJ40185)资助


Characteristics of Soil Organic Carbon Fraction Accumulation and Stability Under Different Rice-rape Rotation Measures
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [27]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    复种油菜是南方稻区促进稳粮增油的重要种植模式,研究秸秆全量还田下,稻油复种不同种植措施对土壤有机碳积累及其稳定性特征的影响,对深入解析稻田土壤碳循环、充分利用冬闲田种植油菜具有重要意义。基于田间定位试验(8年),以水稻-水稻-冬闲(稻稻闲)为对照,探究水稻–水稻–油菜(稻稻油)、水稻–油菜翻耕(稻油翻)和水稻–油菜免耕(稻油免)三种稻油复种处理下土壤有机碳及其组分积累特征。结果表明:相对稻稻闲,稻油复种各处理使有机碳含量在0~20 cm土层增加5.28%~25.13%,尤其稻稻油处理,在20~40 cm土层增幅为18.48%~43.97%,其中稻油翻和稻油免处理达到显著水平;稻油复种均显著提高了不同层次土壤中矿物结合态有机碳(Mineral-associated organic carbon,MAOC)含量。同时,在0~20 cm和20~40 cm土层中,稻油复种各处理均显著降低了有机碳中颗粒态有机碳(Particulate organic carbon,POC)的比例,提高了其MAOC的占比,且在两个土层中提高比例分别为2.31%~7.49%和1.56 %~2.66%。其原因可能是稻油复种不同程度地提高了0~20 cm土层中有机碳转化相关酶(β-葡萄糖苷酶、β-1,4-葡聚糖酶和漆酶)活性以及微生物生物量碳,进而促进土壤颗粒有机碳向矿物结合态有机碳的转化。综上,秸秆全量还田下冬季复种油菜促进了稻田土壤有机碳的积累,且提高了矿物结合态有机碳的占比,增强了土壤碳库的稳定性。

    Abstract:

    【Objective】 Rape multiple-cropping is an important planting mode to promote grain stabilization and rapeseed increase in South China rice growing area. We explored the influence of soil organic carbon (SOC) accumulation and its stability characteristics under different rice–rape rotation measures with whole-straw returning, which is of great significance for in-depth analysis of soil carbon cycle in paddy fields by making full use of winter fallow fields to plant rape. 【Method】 This study is based on an 8-year yield localization experiment. In contrast with rice–rice–winter fallow, we explored the characteristics of SOC and its fraction accumulation under three rice–rape rotation treatments: rice–rice–rape, rice–rape tillage, and rice–rape no tillage. 【Result】 The results indicated that the content of SOC in 0–20 cm soil layer was increased by 5.28%–25.12% under the three rice–rape rotation treatments, especially under the rice–rice–rape treatment. Also, the increasing rate of SOC in 20–40 cm soil layer was 18.48%—43.97%, among which the rice–rape tillage and the rice–rape no tillage treatment reached a significant level.The content of mineral-associated organic carbon (MAOC) from all the rice–rape rotation measures was increased significantly in different soil layers. At the same time, the ratio of particulate organic carbon (POC) to SOC was significantly decreased while the ratio of MAOC to SOC increased in each treatment from both 0–20 cm and 20–40 cm soil layer. The increasing rate of MAOC/SOC were 2.31%–7.49% and 1.56 %–2.66% in the two soil layers, respectively. Possible causes of these results may be that rice–rape rotation increased the activity of organic carbon invertase enzyme (β-glucosidase、β-1, 4-glucanase and Laccase) as well as microbial biomass carbon in 0–20 cm soil layer to varying degrees, thereby promoting the conversion of POC to MAOC. 【Conclusion】 In summary, rape multiple-cropping in winter fallow not only promoted the accumulation of SOC in paddy field, but also increased the ratio of MAOC/SOC, ultimately enhancing the stability of soil carbon pool.

    参考文献
    [1] National Bureau of Statistics of China. China statistical yearbook[M]. Beijing:China Statistics Press,2022. [中华人民共和国国家统计局. 中国统计年鉴[M]. 北京:中国统计出版社,2022.]
    [2] Pan G X,Zhao Q G. Study on evolution of organic carbon stock in agricultural soils of China:Facing the challenge of global change and food security[J]. Advances in Earth Science,2005,20(4):384-393. [潘根兴,赵其国. 我国农田土壤碳库演变研究:全球变化和国家粮食安全[J].地球科学进展,2005,20(4):384-393.]
    [3] Shen R F,Yan X Y,Zhang G L,et al. Status quo of and strategic thinking for the development of soil science in China in the new era[J]. Acta Pedologica Sinica,2020,57(5):1051-1059. [沈仁芳,颜晓元,张甘霖,等.新时期中国土壤科学发展现状与战略思考[J].土壤学报,2020,57(5):1051-1059.]
    [4] Zhao Y,Zhang J,Müller C,et al. Temporal variations of crop residue effects on soil N transformation depend on soil properties as well as residue qualities[J]. Biology and Fertility of Soils,2018,54:659-669.
    [5] Angst G,Mueller K E,Castellano M J,et al. Unlocking complex soil systems as carbon sinks:Multi-pool management as the key[J]. Nature Communications,2023,14:2967.
    [6] Wu J,Cai L Q,Zhang R Z,et al. Distribution of soil particulate organic carbon fractions as affected by tillage practices in dry farmland of the Loess Plateau of central Gansu Province[J]. Chinese Journal of Eco-Agriculture,2018,26(5):728-736. [武均,蔡立群,张仁陟,等. 耕作措施对旱作农田土壤颗粒态有机碳的影响[J]. 中国生态农业学报,2018,26(5):728-736.]
    [7] Rui Y C,Jackson R D,Cotrufo M F,et al. Persistent soil carbon enhanced in Mollisols by well-managed grasslands but not annual grain or dairy forage cropping systems[J]. Proceedings of the National Academy of Sciences,2022,119(7):e2118931119.
    [8] Aaron M P,Aison E K,Cotrufo M F. Restoring particulate and mineral-associated organic carbon through regenerative agriculture[J]. Proceedings of the National Academy of Sciences,2023,120(21):e2217481120.
    [9] Chen X B,Hu Y J,Xia Y H,et al. Contrasting pathways of carbon sequestration in paddy and upland soils[J]. Global Change Biology,2021,27(11):2478-2490.
    [10] Lu S,Zhang Z H. Long-term rice-rice-rape rotation significantly improved soil structure and rice yield[J]. Chinese Journal of Soil Science,2018,49(2):409-414. [卢胜,张振华. 长期稻油轮作改良土壤结构提高水稻产量[J]. 土壤通报,2018,49(2):409-414.]
    [11] Liu W M,Shu Y Q,Xia Y H,et al. Distribution and stabilization of photosynthetic carbon in rice-soil system under long-term multiple cropping of green manure[J]. Acta Pedologica Sinica,2023,60(4):1067-1076. [刘伟民,舒业勤,夏银行,等. 长期复种绿肥下光合碳在水稻-土壤系统中的分配与稳定[J]. 土壤学报,2023,60(4):1067-1076.]
    [12] Cheng C,Wang J J,Cheng H H,et al. Effects of straw returning and tillage system on crop yield and soil fertility quality in paddy field under double-cropping-rice system[J]. Acta Pedologica Sinica,2018,55(1):247-257. [成臣,汪建军,程慧煌,等. 秸秆还田与耕作方式对双季稻产量及土壤肥力质量的影响[J]. 土壤学报,2018,55(1):247-257.]
    [13] Bao S D. Soil and agricultural chemistry analysis[M]. 3rd ed. Beijing:China Agriculture Press,2000. [鲍士旦. 土壤农化分析[M]. 3版. 北京:中国农业出版社,2000.]
    [14] Guan S Y. Soil enzymes and its research methods[M]. Beijing:Agriculture Press,1986. [关松荫. 土壤酶及其研究法[M]. 北京:农业出版社,1986.]
    [15] Auriol M,Filali-Meknassi Y,Tyagi R D,et al. Laccase-catalyzed conversion of natural and synthetic hormones from a municipal wastewater[J]. Water Research,2007,41(15):3281-3288.
    [16] Vance E D,Brookes P C,Jenkinson D S. An extraction method for measuring soil microbial biomass C[J]. Soil Biology & Biochemistry,1987,19(6):703-707.
    [17] Zhang X F,Zheng S M,Xia Y H,et al. Responses of soil organic carbon fractions to land use types in hilly red soil regions,China[J]. Environmental Science,2020,41(3):1466-1473. [章晓芳,郑生猛,夏银行,等. 红壤丘陵区土壤有机碳组分对土地利用方式的响应特征[J]. 环境科学,2020,41(3):1466-1473.]
    [18] Zhang Y Y,Mo F,Han J,et al. Research progress on the native soil carbon priming after straw addition[J]. Acta Pedologica Sinica,2021,58(6):1381-1392. [张叶叶,莫非,韩娟,等. 秸秆还田下土壤有机质激发效应研究进展[J]. 土壤学报,2021,58(6):1381-1392.]
    [19] Cong P,Pang H C,Wang J,et al. Effect of returning chopped and pelletized straw at a high rate enhancing soil organic carbon in subsoil of farmlands of black soil[J]. Acta Pedologica Sinica,2020,57(4):811-823. [丛萍,逄焕成,王婧,等. 粉碎与颗粒秸秆高量还田对黑土亚耕层土壤有机碳的提升效应[J]. 土壤学报,2020,57(4):811-823.]
    [20] Cotrufo M F,Ranalli M G,Haddix M L,et al. Soil carbon storage informed by particulate and mineral-associated organic matter[J]. Nature Geoscience,2019,12(12):989-994.
    [21] Lavallee J M,Soong J L,Cotrufo M F. Conceptualizing soil organic matter into particulate and mineral- associated forms to address global change in the 21st century[J]. Global Change Biology,2020,26:261-273.
    [22] Niu C Y,Weng L P,Lian W L,et al. Carbon sequestration in paddy soils:Contribution and mechanisms of mineral-associated SOC formation[J]. Chemosphere,2023,333:138927.
    [23] Villarino S H,Pinto P,Jackson R B,et al. Plant rhizodeposition:A key factor for soil organic matter formation in stable fractions[J]. Science Advances,2021,7(16):eabd3176.
    [24] Hu Q J,Thomas B W,Powlson D,et al. Soil organic carbon fractions in response to soil,environmental and agronomic factors under cover cropping systems:A global meta-analysis[J]. Agriculture,Ecosystems & Environment,2023,355:108591.
    [25] Sokol N W,Bradford M A. Microbial formation of stable soil carbon is more efficient from belowground than aboveground input[J]. Nature Geoscience,2019,12(1):46-53.
    [26] Liang F,Li B Z,Vogt R D,et al. Straw return exacerbates soil acidification in major Chinese croplands[J]. Resources,Conservation and Recycling,2023,198:107176.
    [27] Wei L,Ge T D,Zhu Z K,et al. Comparing carbon and nitrogen stocks in paddy and upland soils:Accumulation,stabilization mechanisms,and environmental drivers[J]. Geoderma,2021,398:115121.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

舒业勤,彭复细,雷文硕,姜彤彤,陈玉梅,刘伟民,张振华,夏银行.稻油复种不同措施下土壤有机碳组分积累及其稳定性特征[J].土壤学报,2025,62(2):495-503. DOI:10.11766/trxb202311030452 SHU Yeqin, PENG Fuxi, LEI Wenshuo, JIANG Tongtong, CHEN Yumei, LIU Weimin, ZHANG Zhenhua, XIA Yinhang. Characteristics of Soil Organic Carbon Fraction Accumulation and Stability Under Different Rice-rape Rotation Measures[J]. Acta Pedologica Sinica,2025,62(2):495-503.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-11-03
  • 最后修改日期:2024-03-19
  • 在线发布日期: 2025-01-23
文章二维码