短期低氮添加改变黄山松土壤可溶性有机质的分子组成及稳定性
DOI:
作者:
作者单位:

1.武夷学院;2.福建师范大学;3.福建戴云山国家级自然保护区管理局

作者简介:

通讯作者:

中图分类号:

S714.5

基金项目:

国家自然科学基金(32201532;32371846)和福建省自然科学基金项目(2019J05163;2020J01397)


Short-term Low Nitrogen Addition Alters the Molecular Composition and Stability of Soil Dissolved Organic Matter in a Pinus taiwanensis Forest
Author:
Affiliation:

1.WuYi University;2.Fujian Normal University;3.Daiyun Mountain National Nature Reserve Administration Bureau

Fund Project:

the National Natural Science Foundation of China (32201532; 32371846) and the Natural Science Foundation of Fujian Province, China (2020J01397; 2020J01142)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    可溶性有机质(DOM)对环境变化高度敏感,其动态变化对理解全球变化情景下区域/全球碳循环至关重要。然而,氮沉降背景下土壤DOM分子特性如何变化尚不明确。采用尿素添加模拟野外氮沉降,在黄山松林设置了三个氮添加水平(0、40和80 kg·hm-2·a-1)。利用高分辨傅立叶变换离子回旋共振质谱(FT-ICR MS),探究了短期(三年)氮添加对0~10 cm土壤DOM分子组成及其稳定性的影响。FT-ICR MS分析结果表明,DOM分子主要集中在250~400 Da,碳氢氧化合物占全部化合物的50%以上。在DOM分子的八种类别中,木质素类分子在土壤DOM分子中占主导地位,其次是单宁类和缩合芳烃,而易分解的小分子(包括脂质、蛋白质和碳水化合物)的相对丰度较低。尽管氮添加未改变DOM含量和光学特性,但DOM的分子组成变化显著。相比于高氮处理,低氮处理显著降低了DOM中碳水化合物分子的相对丰度,降低幅度73.33%。这可能主要归功于微生物生物量和水解酶活性的增加。此外,低氮添加下双键当量(DBE)显著增加,说明DOM的分子稳定性有所提升。皮尔森(Pearson)相关分析发现,DBE与碳水化合物和蛋白质/氨基糖等小分子化合物呈显著的负相关,而与木质素及缩合芳烃等大分子的相关性不显著。这说明短期氮添加下DOM的分子稳定性可能取决于碳水化合物等易分解小分子的减少而非难分解分子的增加。综合而言,本研究为理解氮沉降下土壤DOM的行为提供了分子层面的新视角。

    Abstract:

    【Objective】Dissolved organic matter (DOM) is highly sensitive to environmental changes, and its dynamic changes are crucial for understanding regional/global carbon cycling under global change scenarios. However, it is not yet clear how the characteristics of soil DOM molecules change under nitrogen deposition. This study aimed to investigate the response of DOM molecular composition and stability to nitrogen addition. 【Method】In this study, three nitrogen addition levels (0, 40, and 80 kg·hm-2·a-1) were conducted in a Pinus taiwanensis forest by using urea addition to simulate nitrogen deposition in the field. The effect of short-term (three years) nitrogen addition on the molecular composition of DOM and its stability was investigated using high-resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). 【Result】The results of FT-ICR MS analysis revealed that DOM molecules were mainly concentrated in 250-400 Da, and CHO compounds accounted for more than 50% of all compounds. Of the eight types of DOM molecules, lignin-like molecules dominated all soil DOM molecules, followed by tannins and condensed aromatics, with the relative abundance of readily decomposable small molecules (including lipids, proteins, and carbohydrates) being low. There was no statistically significant change in the content and optical properties of DOM under nitrogen addition, but significant changes occurred in the properties and composition of DOM molecules. Compared to high nitrogen treatment, low nitrogen treatment significantly reduced the relative abundance of carbohydrate molecules in DOM by 73.33%. This may be largely attributed to the increase in microbial biomass and hydrolytic enzyme activities. Nitrogen addition did not change the nitrogen-containing compounds in DOM molecules, but reduced the sulfur-containing compounds. Furthermore, the average molecular weight and ratio of double bond equivalent to carbon atom number (DBE/C), modified aromaticity index (AImod), and aromaticity equivalent (Xc) of DOM molecule did not show significant changes under nitrogen addition. However, a significant increase in DBE values was observed under low nitrogen addition, indicating an improvement in the molecular stability of DOM. The improvement of DOM molecular stability may have a potential impact on soil carbon pool stability. Pearson's correlation analysis revealed that DBE values were significantly negatively correlated with small molecule compounds such as carbohydrates and proteins/amino sugars, while the correlation with large molecules such as lignin and condensed aromatics was not significant. Besides, nitrogen addition did not significantly change the difficult-to-decompose molecules such as lignin and condensed aromatic compounds in DOM. This suggests that the molecular stability of DOM under short-term nitrogen addition may depend on the removal of readily decomposable small molecules, such as carbohydrates, rather than the increment of refractory molecules.【Conclusion】Collectively, this study provides a new perspective at the molecular level for understanding the behavior of soil DOM under nitrogen deposition, and a reference for understanding the potential relationship between DOM molecules and soil carbon stability.

    参考文献
    相似文献
    引证文献
引用本文

元晓春,张晓晴,周茜,吴联钻,陈俊明,曾泉鑫,柏欣宇,李文周,陈岳民.短期低氮添加改变黄山松土壤可溶性有机质的分子组成及稳定性[J].土壤学报,,[待发表]
YUAN Xiaochun, ZHANG Xiaoqing, ZHOU Qian, WU Lianzuan, CHEN Junming, ZENG Quanxin, BAI Xinyu, LI Wenzhou, CHEN Yuemin. Short-term Low Nitrogen Addition Alters the Molecular Composition and Stability of Soil Dissolved Organic Matter in a Pinus taiwanensis Forest[J]. Acta Pedologica Sinica,,[In Press]

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-11-16
  • 最后修改日期:2024-03-25
  • 录用日期:2024-06-18
  • 在线发布日期:
  • 出版日期: