铁氧化物对亚热带森林表层和亚表层土壤碳分解激发效应的影响
DOI:
作者:
作者单位:

安徽农业大学林木资源培育安徽省重点实验室

作者简介:

通讯作者:

中图分类号:

基金项目:


Effects of iron oxides on the priming effect of topsoil and subsoil carbon decomposition in a subtropical forest
Author:
Affiliation:

Anhui Province Key Laboratory of Forest Resources and Silviculture, Anhui Agricultural University

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    土壤有机碳(SOC)与铁氧化物之间的关系对土壤碳持久性的调节至关重要。在陆地生态系统中,亚表层土壤作为重要的有机碳库,其动态过程越来越受到关注。然而,不稳定碳输入如何影响土壤矿物与有机碳之间的相互作用尚不清楚,尤其在亚表层土壤中研究甚少。为了解决这个问题,本试验研究了两种不同晶体型态的铁氧化物—针铁矿和水铁矿,对亚热带森林表层土壤(0~10 cm)和亚表层土壤(20~40 cm)碳激发效应的影响。通过室内培养试验,加入13C标记的葡萄糖来量化激发效应的强度。结果表明:激发效应随着土层深度的增加而减小,表层和亚表层土壤碳激发效应分别为1.63 mg·g?1和0.61 mg·g?1。铁氧化物类型与土层深度之间对土壤碳激发效应产生交互影响。在表层土壤中,针铁矿的添加显著降低了激发效应的强度(P<0.05),水铁矿的添加对激发效应没有影响。亚表层土壤中,水铁矿的添加显著增加了激发效应的强度(P<0.05),针铁矿添加对激发效应没有显著影响。表层土壤中,针铁矿添加后,共沉淀产生铁结合有机碳抑制了SOC的矿化,激发效应受到碳限制的影响。在亚表层土壤中,激发效应受到碳限制和磷限制的影响。水铁矿的还原溶解,降低了铁氧化物对SOC的保护作用,进而增强了土壤有机碳矿化。可见,铁氧化物既可通过矿物保护固持SOC,又能通过氧化还原反应导致SOC矿化。总之,表层和亚表层土壤碳激发效应对铁氧化物的响应存在差异,铁氧化物对有机碳的累积作用受到自身性质和土壤条件的影响。

    Abstract:

    【Objective】The relationship between soil organic carbon and iron oxides is crucial to the regulation of soil carbon stability. In terrestrial ecosystems, subsoil is an important organic carbon reservoir, which has been paid increasing attention due to its dynamic processes. However, little is known about how carbon inputs affect the interactions between soil minerals and organic carbon, especially in the subsoil.【Method】To address the knowledge gap, this study investigated the effects of two different crystalline forms of iron oxides, goethite and ferrihydrite, on the priming effect of topsoil (0~10 cm) and subsoil (20~40 cm) in subtropical forests. We incubated the soils by adding 13C-labeled glucose to quantify the intensity of the priming effects in a laboratory experiment.【Result】The results show that the priming effects of topsoil and subsoil were 1.63 mg·g?1and 0.61 mg·g?1, respectively, indicating that the priming effects decreased with soil depth. An interactive effect was observed between the type of iron oxides and soil depth on the priming effect of SOC. In topsoil, the addition of goethite significantly decreased the intensity of the priming effect (P < 0.05), while ferrihydrite showed no significant influence on it. In the subsoil, the addition of ferrihydrite significantly increased the intensity of the priming effect (P < 0.05), but the addition of goethite had no significant effect on the priming. In topsoil, after goethite was added, the co-precipitation produced iron-bound organic carbon, which inhibited the mineralization of organic carbon, influenced microbial carbon limitation, and further decreased the intensity of the priming effect. In the subsoil, the intensity of the priming effect was influenced by the limitation of microbial carbon and phosphorus. Glucose acted as an electron shuttle, increasing iron reduction and CO2 production. The reduction and dissolution of ferrihydrite reduced the protective effect of iron oxide on SOC, which in turn enhanced the mineralization of SOC. Iron oxides can increase SOC accumulation and stability through mineral protection and lead to SOC mineralization through redox reaction.【Conclusion】Overall, the priming effects of topsoil and subsoil have different responses to iron oxides, and the influence of iron oxides on organic carbon accumulation is affected by their properties and soil conditions.

    参考文献
    相似文献
    引证文献
引用本文

张雨婷,胥文昊,王清奎,田鹏.铁氧化物对亚热带森林表层和亚表层土壤碳分解激发效应的影响[J].土壤学报,,[待发表]
ZhangYuting, XuWenhao, WangQingkui, TianPeng. Effects of iron oxides on the priming effect of topsoil and subsoil carbon decomposition in a subtropical forest[J]. Acta Pedologica Sinica,,[In Press]

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-01-03
  • 最后修改日期:2024-06-14
  • 录用日期:2024-07-09
  • 在线发布日期:
  • 出版日期: