离子界面反应对安溪县典型花岗岩崩岗砂壤红土层渗压特性的影响
作者:
中图分类号:

S157.1

基金项目:

水利部重大科技项目(SKS-2022073)、福建省安溪县现代农业产业园协同创新中心项目(KMd18003A)和自然资源部创新中心资助项目(KY090000042021007)共同资助


The Influence of Ion Interface Reaction on the Permeability Pressure Characteristics of Typical Granite Benggang Sandy Loam Red Soil Layer in Anxi Country
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [30]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    降雨会改变崩壁土壤中水分的运移进而影响土壤颗粒表面的离子界面反应,同时大量雨水积累对下覆土层产生的极高渗透压力会导致土壤侵蚀。本研究以安溪县典型崩岗的崩壁红土层为研究对象,利用不同价态和浓度的离子溶液来调控土壤颗粒表面的离子界面反应,分析其对崩壁红土层渗压特性的影响。结果表明:离子界面反应下土壤的渗压过程受土壤中离子价态和浓度的影响主要体现在其改变土壤内力进而影响土壤孔隙状况。K+和Mg2+分别降低和提高土壤的渗透系数和孔隙比,土壤渗透系数与电解质浓度间存在良好的单指数递增关系,各级固结压力下的拟合方程均可表达为:k=aex/t+bR2>0.845,P<0.1。

    Abstract:

    【Objective】 Rainfall can alter the movement of water in the soil of landslide-prone slopes, affecting the types and concentrations of ions in various soil layers, thereby influencing ion-interface reactions on soil particle surfaces. Additionally, moisture accumulation can exert high permeability pressure on the underlying soil layers, making them prone to deformation and instability. Soil with weaker resistance to permeability pressure, when closer to the surface, is more susceptible to soil erosion. Previous research has mainly focused on the influence of soil water stability and mechanical stability on landslide erosion, however, the impact of ion-interface reactions based on ion characteristics on the permeability characteristics of landslides is not well understood. 【Method】 This study focused on the red soil layer of a typical landslide in Anxi County and used ion solutions with different valences and concentrations to manipulate ion-interface reactions on the soil particle surfaces and analyzed their effects on the permeability characteristics of the landslide's red soil layer. 【Result】 K+ reduced soil porosity and decreased the soil's permeability and conductivity, while Mg2+ increased soil porosity and enhanced the soil's permeability and conductivity. There was a good single exponential increasing relationship between the permeability coefficient and the electrolyte concentration, with the fitting equations for various consolidation pressures expressed as k = aex/t+ b, R2> 0.845, P < 0.1. Also, K+ increased the electrostatic repulsion between soil particles, resulting in net repulsion forces between them, while Mg2+ reduced the electrostatic repulsion, leading to net attraction forces between soil particles. Higher electrolyte concentrations have a more significant impact on altering the internal forces within the soil. 【Conclusion】 Ion-interface reactions based on differences in ion characteristics can influence the internal forces of the soil, causing some degree of structural changes in landslide-prone soil.

    参考文献
    [1] Zhang X B. Approach to weathering and expansion mechanism of unstable slope rocks of dilapidated granite[J]. Soil and Water Conservation in China,2005(7):10-11. [张信宝. 崩岗边坡失稳的岩石风化膨胀机理探讨[J]. 中国水土保持,2005(7):10-11.]
    [2] Huang Y H. Soil and water conservation:Southern edition[M]. Beijing:China Agriculture Press,2016. [黄炎和. 水土保持学:南方本[M]. 北京:中国农业出版社,2016.]
    [3] Li G,Tang C A,Li L C. Advances in rock deformation and failure process under water-rock coupling[J]. Advances in Mechanics,2012,42(5):593-619. [李根,唐春安,李连崇. 水岩耦合变形破坏过程及机理研究进展[J]. 力学进展,2012,42(5):593-619.]
    [4] Bolt G H. Physico-chemical analysis of the compressibility of pure clays[J]. Géotechnique,1956,6(2):86-93.
    [5] Editorial Board of Environmental science dictionary. Environmental science dictionary[M]. 2nd ed. Beijing:China Environmental Science Press,2008. [《环境科学大辞典》编委会. 环境科学大辞典[M]. 2版. 北京:中国环境科学出版社,2008.]
    [6] Xu Y Z,Yang Y H,Huang Z Q. Study on the influence of compaction degree on permeability characteristics of expansive soil[J]. Western China Communications Science & Technology,2022(2):8-10. [许英姿,杨昀和,黄政棋. 压实度对膨胀土渗透特性的影响研究[J]. 西部交通科技,2022(2):8-10.]
    [7] Gao J,Dang F N,Ding J L,et al. Research on soft soil consolidation calculation method considering the impacts of initial consolidation state[J]. Chinese Journal of Rock Mechanics and Engineering,2019,38(S1):3189-3196. [高俊,党发宁,丁九龙,等. 考虑初始固结状态影响的软基固结计算方法研究[J]. 岩石力学与工程学报,2019,38(S1):3189-3196.]
    [8] Dang F N,Song J Y,Zhou M,et al. Consolidation theory of saturated soil considering permeability coefficient variation and its rationality verification[J]. Journal of China Institute of Water Resources and Hydropower Research,2022,20(6):506-515. [党发宁,宋靖宇,周玫,等. 饱和土的变渗透系数固结理论及其合理性验证[J]. 中国水利水电科学研究院学报,2022,20(6):506-515.]
    [9] Liu J F. The Effects of soil internal forces on aggregate stability and splash erosion of main soils in loess region[D]. Yangling,Shaanxi:Northwest A & F University,2022. [刘婧芳. 土壤内力对黄土区主要土壤团聚体稳定性及溅蚀的影响机制[D]. 陕西杨凌:西北农林科技大学,2022.]
    [10] Ma R T,Hu F N,Liu J F,et al. Evaluating the effect of soil internal forces on the stability of natural soil aggregates during vegetation restoration[J]. Journal of Soils and Sediments,2021,21(9):3034-3043.
    [11] Xing X G,Ma X Y,Kang D G. Impacts of type and concentration of salt cations on soil water retention and desiccation cracking[J]. Transactions of the Chinese Society of Agricultural Engineering,2016,32(9):115-122. [邢旭光,马孝义,康端刚. 盐阳离子类型及浓度对土壤持水及干缩开裂的作用效果[J]. 农业工程学报,2016,32(9):115-122.]
    [12] Huang X R,Li H,Li S,et al. Effect of coupling of electric field and organic macromolecular on soil aggregate stability[J]. Acta Pedologica Sinica,2013,50(4):734-742. [黄学茹,李航,李嵩,等. 土壤电场与有机大分子的耦合对土壤团聚体稳定性的影响[J]. 土壤学报,2013,50(4):734-742.]
    [13] Liu Y X,Li W T,Sun X Y,et al. Pb and Cd-polluted soil remediation effects by green waste compost[J]. Journal of Agro-Environment Science,2022,41(4):802-810. [刘源鑫,李维庭,孙向阳,等. 园林废弃物堆肥对铅镉污染土壤的修复效果[J]. 农业环境科学学报,2022,41(4):802-810.]
    [14] Gan L,Zhang J,Zheng S W,et al. Effects of straw mulching on the change of soil moisture and structure in sugarcane field in Guangxi[J]. Journal of Southern Agriculture,2021,52(7):1745-1752. [甘磊,张俊,郑思文,等. 秸秆覆盖对广西甘蔗地土壤水分与结构变化的影响[J]. 南方农业学报,2021,52(7):1745-1752.]
    [15] Xu Z S,Hu W L. Characteristics of pore structure and permeability in soil crust using 3D X-CT images[J]. Transactions of the Chinese Society of Agricultural Engineering,2021,37(14):89-97. [许智隼,胡五龙. 基于三维X-CT图像的结皮土壤孔隙结构特征与渗透率[J]. 农业工程学报,2021,37(14):89-97.]
    [16] Li H,Yang G. Rethink the methodologies in basic soil science research:From the perspective of soil chemistry[J]. Acta Pedologica Sinica,2017,54(4):819-826. [李航,杨刚. 基础土壤学研究的方法论思考:基于土壤化学的视角[J]. 土壤学报,2017,54(4):819-826.]
    [17] Zhang Z,Chen J,Lin J S,et al. Effect of water content on swell-shrink characteristics of collapsed granite soil in Anxi County[J]. Acta Pedologica Sinica,2020,57(3):600-609. [章智,陈洁,林金石,等. 含水率对安溪县花岗岩崩岗土体胀缩特性的影响[J]. 土壤学报,2020,57(3):600-609.]
    [18] Hu F N,Xu C Y,Li H,et al. Particles interaction forces and their effects on soil aggregates breakdown[J]. Soil and Tillage Research,2015,147:1-9.
    [19] Fu E D. Analysis and discussion of the variable water head method for the determination permeability coefficient[J]. Shanxi Architecture,2014,40(2):68-69. [符二东. 变水头法测定渗透系数试验方法分析及探讨[J]. 山西建筑,2014,40(2):68-69.]
    [20] Zhao Y H,Wang F G,Gao Z K,et al. Method of determining cohesive soil pressure instrument parameters[J]. Experimental Technology and Management,2014,31(8):38-41. [赵玉红,王福刚,高振凯,等. 渗压仪测定黏性土多参数的方法[J]. 实验技术与管理,2014,31(8):38-41.]
    [21] Tian R,Liu X M,Gao X D,et al. Observation of specific ion effects in humus aggregation process[J]. Pedosphere,2021,31(5):736-745.
    [22] Ding W Q. The effect of ion-surface interacitons on soil water infiltrability[D]. Chongqing:Southwest University,2016. [丁武泉. 离子界面反应对土壤水分入渗的影响[D]. 重庆:西南大学,2016.]
    [23] Hu F N,Liu J F,Xu C Y,et al. Soil internal forces initiate aggregate breakdown and splash erosion[J]. Geoderma,2018,320:43-51.
    [24] Yang Z H. Water infiltration and simulation of typical loess-developed soils affected by soil internal forces[D]. Beijing:University of Chinese Academy of Sciences,2019. [杨志花. 土壤内力作用对黄土母质发育土壤水力学性质的影响及模拟[D]. 北京:中国科学院大学,2019.]
    [25] Bai Y F. Characteristics of sodic alkaline soil water infiltration process and water-salt transport[D]. Harbin:Northeast Institute of Geography and Agroecology,Chinese Academy of Sciences,2021. [白玉锋. 苏打碱土土壤水分入渗过程及水盐运移特征[D]. 哈尔滨:中国科学院大学(中国科学院东北地理与农业生态研究所),2021.]
    [26] Song X S,He J H,Ding W Q,et al. Influence mechanism of ionic interface reaction on soil porosity[J]. Bulletin of Soil and Water Conservation,2023,43(3):47-53. [宋孝帅,何家洪,丁武泉,等. 离子界面反应对土壤孔隙状况的影响机制[J]. 水土保持通报,2023,43(3):47-53.]
    [27] Liu X M. Cation exchange equilibrium in soil:Electric field,quantum fluctuation of ion outer electrons as well their coupling effects[D]. Chongqing:Southwest University,2014. [刘新敏. 土壤离子交换平衡:电场、量子涨落及其耦合作用[D]. 重庆:西南大学,2014.]
    [28] Luo Y X. Study on soil particle interaction as considering hofmeister effects and its effects on soil water infiltration[D]. Chongqing:Southwest University,2019. [罗雅雪. 基于Hofmeister效应的土粒相互作用及其对土壤水分入渗的影响[D]. 重庆:西南大学,2019.]
    [29] Li Q Y,Li X,Yang S,et al. Structure,dynamics,and stability of water molecules during interfacial interaction with clay minerals:Strong dependence on surface charges[J]. ACS Omega,2019,4(3):5932-5936.
    [30] Katuwal S,Moldrup P,Lamandé M,et al. Effects of CT number derived matrix density on preferential flow and transport in a macroporous agricultural soil[J]. Vadose Zone Journal,2015,14(7):1-13.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

吴云博,章智,李晓非,毛晓花,张越,蒋芳市,黄炎和,林金石.离子界面反应对安溪县典型花岗岩崩岗砂壤红土层渗压特性的影响[J].土壤学报,2025,62(2):411-421. DOI:10.11766/trxb202401040012 WU Yunbo, ZHANG Zhi, LI Xiaofei, MAO Xiaohua, ZHANG Yue, JIANG Fangshi, HUANG Yanhe, LIN Jinshi. The Influence of Ion Interface Reaction on the Permeability Pressure Characteristics of Typical Granite Benggang Sandy Loam Red Soil Layer in Anxi Country[J]. Acta Pedologica Sinica,2025,62(2):411-421.

复制
分享
文章指标
  • 点击次数:53
  • 下载次数: 284
  • HTML阅读次数: 288
  • 引用次数: 0
历史
  • 收稿日期:2024-01-04
  • 最后修改日期:2024-06-20
  • 在线发布日期: 2025-01-23
文章二维码