短期和长期氮磷添加对青藏高原草甸土壤微生物残体积累系数的影响
作者:
作者单位:

兰州大学草种创新与草地农业生态系统全国重点实验室/草地农业科技学院

基金项目:

国家自然科学基金项目(42301105)、兰州大学“双一流”引导专项:队伍建设经费(561119221)资助


Effects of Short-term and Long-term Nitrogen and Phosphorus Additions on Microbial Necromass Accumulation Coefficients in Meadow Soils of the Qinghai-Tibet Plateau
Author:
Affiliation:

State Key Laboratory of Herbage Improvement and Grassland, Agroecosystems / College of Pastoral Agriculture Science and Technology, Lanzhou University

Fund Project:

Supported by the National Natural Science Foundation of China (No. 42301105), and the

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    微生物残体积累系数(NAC)是单位微生物生物量积累的微生物残体量,可用来指征微生物残体的积累效率,然而青藏高原草甸生态系统的土壤NAC对短期和长期氮磷添加的响应尚不明确。以青藏高原草甸氮磷添加1年(短期)和10年(长期)后的土壤为研究对象,量化了土壤微生物残体碳(MNC)、土壤微生物生物量碳(MBC),并估算了短期和长期养分添加后的NAC,同时综合土壤基本理化性质、微生物胞外酶活性、植物生物量等环境因子,分析了NAC的主要调控因素。结果显示,短期养分添加后0~10 cm和20~30 cm土层的NAC分别为31.33和38.12,不同氮磷添加处理对NAC无显著影响(P>0.05);长期养分添加后0~10 cm和20~30 cm土层的NAC分别为14.46和17.49,氮磷添加显著降低了20~30 cm土层的NAC(P<0.05)。进一步的统计分析结果显示,pH是影响NAC的主要因素,长期氮磷添加导致土壤pH降低,从而降低了NAC。本研究探讨了NAC对氮磷添加的差异响应及影响因素,为理解氮磷沉降增加背景下微生物介导的碳积累提供了数据支持。

    Abstract:

    【Objective】Microbes and their necromass play a key role in the accumulation and long-term sequestration of soil organic carbon (SOC). Moreover, continuous increases in nitrogen (N) and phosphorus (P) inputs can significantly affect microbe-mediated SOC accumulation processes. The microbial necromass accumulation coefficient (NAC), which quantifies the accumulation of microbial necromass per unit of microbial biomass, plays a key role in assessing the efficiency of microbial necromass accumulation. However, the influence of short-term and long-term additions of N and P on this coefficient within meadow ecosystems remains unclear. This study focused on investigating the differential responses of NAC to (1) short-term and long-term N and P additions and (2) additions of N and P across different soil layers. 【Method】To explore the response of NAC to N and P additions, this study analyzed soil samples from the meadow on the Qinghai-Tibet Plateau subjected to 1 year (short-term) and 10 years (long-term) of N and P additions. It was measured the soil microbial necromass carbon (MNC) and the soil microbial biomass carbon (MBC), and calculated the value of NAC. Additionally, considering other environmental factors including soil physical and chemical properties, microbial extracellular enzyme activities, and plant biomass, the main influencing factors of NAC were identified. 【Result】The results showed that after short-term N and P additions, the NAC values in the 0-10 cm and 20-30 cm soil layers were 31.33±2.97 (mean±SE) and 38.12±3.90, respectively, and N and P additions had no significant effect on NAC (P>0.05). After long-term additions of N and P, the NAC values in the 0-10 cm and 20-30 cm soil layers were 14.46±1.12 and 17.49±3.22, respectively; and the additions of N and P significantly reduced the NAC in the 20-30 cm layer (P<0.05). The results of the Random Forest indicated that pH was the most important factor affecting NAC, and the correlation analysis revealed a significant positive relationship between soil pH and NAC. Moreover, the long-term N addition, P addition and simultaneous addition of N and P significantly reduced the pH of the 20-30 cm soil layer. These findings suggest that the decrease in soil pH due to long-term N and P supplementation is the main cause of the reduction in NAC. The lowered soil pH may lead to the dissolution of minerals, thereby reducing the mineral protection of MNC, making it more susceptible to decomposition, ultimately decreasing the NAC of microorganisms. 【Conclusion】In summary, changes in pH resulting from long-term nutrient additions dominated the changes in NAC. In the context of ongoing increases in N and P deposition, it is advisable to closely monitor changes in soil pH and implement timely measures to maintain the stability of SOC. This study explores the differential responses of NAC to N and P additions and their influencing factors, providing data support for understanding microbial-mediated carbon accumulation under the context of increasing N and P deposition.

    参考文献
    相似文献
    引证文献
引用本文

李一凡,石碧婉,杨志颖,高文静,马田,朱剑霄,贺金生.短期和长期氮磷添加对青藏高原草甸土壤微生物残体积累系数的影响[J].土壤学报,2025,62(3). DOI:10.11766/trxb202401090018 LI Yifan, SHI Biwan, YANG Zhiying, GAO Wenjing, MA Tian, ZHU Jianxiao, HE Jinsheng. Effects of Short-term and Long-term Nitrogen and Phosphorus Additions on Microbial Necromass Accumulation Coefficients in Meadow Soils of the Qinghai-Tibet Plateau[J]. Acta Pedologica Sinica,2025,62(3).

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-01-09
  • 最后修改日期:2024-06-27
  • 录用日期:2024-08-20
  • 在线发布日期: 2024-08-22
文章二维码