基于结合型制图方法的土壤类型推理研究
作者:
基金项目:

国家自然科学基金项目(4217010868,4187070193)资助


Research on Soil Type Inference Based on Combinatorial Cartography Method
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [31]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    通过数字土壤制图获取更高精度的土壤类型空间分布,对于人们合理利用土地资源具有重要意义。本研究基于实地采样点根据母质类型筛选环境因子,并使用随机森林,土壤景观推理模型方法(Soil-land Inference Model,SoLIM)、K邻近算法(K-Nearest Neighbor,KNN)等三种不同制图方法分别分区建模,得到制图结果后合并形成全域土壤类型空间分布图,继而,使用FP-Growth算法挖掘环境因子内部关联关系(频繁项集),分别将其与上述三种制图结果结合,再次推理土壤类型空间分布。制图结果显示:(1)按母质类型分开制图的效果和精度均较母质一起制图时好,且土壤类型空间分布的推理也更加合理。(2)随机森林与频繁项集结合制图在本研究中精度最高,为70.73%,且与另外两种结合方法推理的土壤类型空间分布也有一定的相似性,通过对比分析能够确定研究区土种类型的空间分布。(3)与频繁项集结合后,三种方法的制图精度和Kappa系数均有提升,提升最多的为KNN方法(分别提升9.76%,11.70%),最少的为随机森林方法(分别提升4.88%,5.85%),验证了本文设计结合方法的有效性。本研究主要进行了两方面探究,一方面探究了母质对环境因子筛选的影响,为数字土壤制图的因子筛选提供参考;另一方面通过将频繁项集与不同制图方法相结合为数字土壤制图提供了新的方法和思路,同时也为关联关系的信息化应用提供了参考。

    Abstract:

    【Objective】 For the rational use of land resources, it is important to obtain accurate spatial distribution of soil types using digital soil mapping technologies. 【Method】 In this study, environmental factors were screened according to the soil parent material type based on field sampling points, and then three different mapping methods, random forest, SoLIM, and KNN, were used to map the zones according to the selected environmental factors, respectively. Each method was used individually to generate zoning maps, providing different reasoning for the spatial distribution of soil types. The zoning mapping results were obtained and combined to form a universal spatial distribution map of soil types, and then, we used the FP-Growth algorithm to effectively mine the internal correlation between environmental factors. By combining these associations with different mapping results obtained previously, the spatial distribution of soil types in the study area was deduced and used to obtain higher quality and precision inference results. 【Result】 The mapping results revealed several key findings: (1) The independent mapping of soil type based on the parent material type of soil by three different mapping methods is more effective and accurate than the joint mapping of all parent materials, and the inference of spatial distribution of soil types is also more reasonable. (2) Among the three mapping methods adopted in this study, the method combining random forest and frequent itemset mapping had the highest accuracy of 70.73%. Moreover, the results obtained by this combined method are similar to the spatial distribution of soil types inferred by the other two combined methods. Through comparative analysis, we were able to determine the approximate spatial distribution of soil species in the study area. (3) After the three mapping methods were combined with frequent itemsets, we observed that all methods had different degrees of improvement in accuracy verification and Kappa coefficient. Among them, the KNN method had the most significant improvement effect, the total mapping accuracy increased by 9.76%, and the Kappa coefficient increased by 11.70%. On the contrary, the random forest method had the smallest improvement, wherein, the total mapping accuracy and the Kappa coefficient increased by 4.88%, and 5.85%, respectively. These results validate the effectiveness of the combination method designed in this study. 【Conclusion】 The first, aspect of this study aimed to investigate the influence of soil parent material type on environmental factor screening. This aspect had relatively important reference significance for selecting appropriate environmental factors in the process of digital soil mapping. On the other hand, by combining frequent itemsets with the three different mapping methods used, this study not only provides a new method and idea for the exploration and application of digital soil mapping, but also provides a useful reference for the information application of frequent itemsets association.

    参考文献
    [1] Zhu A X,Yang L,Fan N Q,et al. The review and outlook of digital soil mapping[J]. Progress in Geography,2018,37(1):66-78. [朱阿兴,杨琳,樊乃卿,等. 数字土壤制图研究综述与展望[J]. 地理科学进展,2018,37(1):66-78.]
    [2] Zhu A X,Li B L,Yang L,et al. Predictive soil mapping based on a GIS,expert knowledge,and fuzzy logic framework and its application prospects in China[J]. Acta Pedologica Sinica,2005,42(5):844-851. [朱阿兴,李宝林,杨琳,等. 基于GIS、模糊逻辑和专家知识的土壤制图及其在中国应用前景[J]. 土壤学报,2005,42(5):844-851.]
    [3] Huang W,Luo Y,Wang S Q,et al. Knowledge of soil-landscape model obtain from a soil map and mapping[J]. Acta Pedologica Sinica,2016,53(1):72-80. [黄魏,罗云,汪善勤,等. 基于传统土壤图的土壤-环境关系获取及推理制图研究[J]. 土壤学报,2016,53(1):72-80.]
    [4] Mehrabi Gohari E,Matinfar H R,Taghizadeh R. Evaluating soil- environment inference model(SOLIM)for soil mapping based on fuzzy logic in Kashan[J]. Journal of Water and Soil Science,2017,21(3):255-268.
    [5] Zhou Y,Zhao X M,Guo X. Prediction of total nitrogen distribution in surface soil based on multi-source auxiliary variables and random forest approach[J]. Acta Pedologica Sinica,2022,59(2):451-460. [周洋,赵小敏,郭熙. 基于多源辅助变量和随机森林模型的表层土壤全氮分布预测[J]. 土壤学报,2022,59(2):451-460.]
    [6] Zhu A X. Model and method of fine digital soil survey[M]. Beijing:Science Press,2008. [朱阿兴. 精细数字土壤普查模型与方法[M]. 北京:科学出版社,2008.]
    [7] Gong Z T. China soil geography[M]. Beijing:Science Press,2014. [龚子同. 中国土壤地理[M]. 北京:科学出版社,2014.]
    [8] Huang W,Xu W,Wang S Q,et al. Extraction of knowledge about soil-environment relationship based on an uncertainty model[J]. Acta Pedologica Sinica,2018,55(1):54-63. [黄魏,许伟,汪善勤,等. 基于不确定性模型的土壤--环境关系知识获取方法的研究[J]. 土壤学报,2018,55(1):54-63.]
    [9] Lagacherie P. Digital soil mapping:A state of the art[M]//Digital soil mapping with limited data. Dordrecht:Springer Netherlands,2008:3-14.
    [10] Wadoux A M J C,Minasny B,McBratney A B. Machine learning for digital soil mapping:Applications,challenges and suggested solutions[J]. Earth-Science Reviews,2020,210:103359.
    [11] Chen R. Soil mapping method research in mixing region of plain and hill[D]. Wuhan:Huazhong Agricultural University,2021. [陈荣. 平原-丘陵混合区域土壤制图方法研究[D]. 武汉:华中农业大学,2021.]
    [12] Pekel E. Estimation of soil moisture using decision tree regression[J]. Theoretical and Applied Climatology,2020,139(3):1111-1119.
    [13] Hateffard F,Dolati P,Heidari A,et al. Assessing the performance of decision tree and neural network models in mapping soil properties[J]. Journal of Mountain Science,2019,16(8):1833-1847.
    [14] Chandan T R. Recent trends of machine learning in soil classification:A review[J]. International Journal of Computational Engineering Research,2018,8(9):2250-3005.
    [15] Huang S H,Pu L J,Xie X F,et al. Review and outlook of designing of soil sampling for digital soil mapping[J]. Acta Pedologica Sinica,2020,57(2):259-272. [黄思华,濮励杰,解雪峰,等. 面向数字土壤制图的土壤采样设计研究进展与展望[J]. 土壤学报,2020,57(2):259-272.]
    [16] Duan M Q,Zhang X G. Using remote sensing to identify soil types based on multiscale image texture features[J]. Computers and Electronics in Agriculture,2021,187:106272.
    [17] Zhang X T,Huang W,Fu P H,et al. Research on digital soil mapping based on feature screening algorithm [J].Acta Pedologica Sinica,2024,61(3):635-647.[张晓婷,黄魏,傅佩红,等.基于特征筛选算法的数字土壤制图研究[J].土壤学报,2024,61(3):635-647.]
    [18] Zhou Z K,Wang Z Q,Wang W,et al. Spatial distribution simulation of soil heavy metals based on remote sensing data and random forest algorithm-Taking chromium as an example[J]. Journal of Anhui Agricultural Sciences,2023,51(14):51-54. [周忠科,王泽强,王唯,等. 基于遥感数据和随机森林算法的土壤重金属空间分布模拟--以铬为例[J]. 安徽农业科学,2023,51(14):51-54.]
    [19] Zhang Y K,Ji W J,Saurette D D,et al. Three-dimensional digital soil mapping of multiple soil properties at a field-scale using regression Kriging[J]. Geoderma,2020,366:114253.
    [20] Zhou Z H. Machine learning[M]. Beijing:Tsinghua University Press,2016. [周志华. 机器学习[M]. 北京:清华大学出版社,2016.]
    [21] Kotu V,Deshpande B. Predictive analytics and data mining:Concepts and practice with RapidMiner[M]. Waltham,MA:Morgan Kaufmann,2015.
    [22] Zhu X,Deng H T,Chen Z. A brief review on frequent pattern mining[C]//20113rd International Workshop on Intelligent Systems and Applications. Wuhan,China. IEEE,2011:1-4.
    [23] Qiu X Q,Hu Y M,Zhu A X,et al. Research on associated rule-based error checking method on assessment index database of cultivated land quality:A case study on Guangzhou city[J]. China Land Science,2020,34(3):75-83. [邱小倩,胡月明,朱阿兴,等. 基于关联规则的耕地质量评价数据检错方法研究--以广州市为例[J]. 中国土地科学,2020,34(3):75-83.]
    [24] Zhang G M,Zhu A X. A representativeness heuristic for mitigating spatial bias in existing soil samples for digital soil mapping[J]. Geoderma,2019,351:130-143.
    [25] Han J W,Pei J,Yin Y W,et al. Mining frequent patterns without candidate generation:A frequent-pattern tree approach[J]. Data Mining and Knowledge Discovery,2004,8(1):53-87.
    [26] Bai H R,Zhao M F,Wang F,et al. Prediction and mapping of Stagnic Anthrosols soil series based on fuzzy c-means algorithm[J]. Journal of Nanjing Agricultural University,2020,43(6):1124-1133. [白浩然,赵美芳,王飞,等. 基于模糊c-均值算法的水耕人为土土系预测制图[J]. 南京农业大学学报,2020,43(6):1124-1133.]
    [27] McSweeney K,Slater B K,David Hammer R,et al. Towards a new framework for modeling the soil-landscape continuum[M]//Amundson R,Harden J,Singer M,eds. SSSA Special Publications. Madison,WI,USA:Soil Science Society of America,2015:127-145.
    [28] Qiu L,Li A B,Zhao Y G. Digital soil mapping based on Fisher discriminant analysis[J]. Chinese Journal of Soil Science,2012,43(6):1281-1286. [邱琳,李安波,赵玉国. 基于Fisher判别分析的数字土壤制图研究[J]. 土壤通报,2012,43(6):1281-1286.]
    [29] Zhu A X,Lu G N,Liu J,et al. Spatial prediction based on third law of geography[J]. Annals of GIS,2018,24(4):225-240.
    [30] Han H W,Xu W,Huang W,et al. Soil mapping based on remote sensing images and decision tree algorithm[J]. Chinese Journal of Soil Science,2019,50(1):8-14. [韩浩武,许伟,黄魏,等. 基于遥感影像和决策树算法的土壤制图[J]. 土壤通报,2019,50(1):8-14.]
    [31] Zhu A X,Hudson B,Burt J,et al. Soil mapping using GIS,expert knowledge,and fuzzy logic[J]. Soil Science Society of America Journal,2001,65(5):1463-1472.
    相似文献
    引证文献
引用本文

李坤,黄魏,傅佩红,陈宇昊,王子影.基于结合型制图方法的土壤类型推理研究[J].土壤学报,2025,62(2):348-361. DOI:10.11766/trxb202402030056 LI Kun, HUANG Wei, FU Peihong, CHEN Yuhao, WANG Ziying. Research on Soil Type Inference Based on Combinatorial Cartography Method[J]. Acta Pedologica Sinica,2025,62(2):348-361.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-02-13
  • 最后修改日期:2024-05-17
  • 在线发布日期: 2025-01-23
文章二维码