高海拔地区农田和森林土壤稀有细菌群落结构差异及影响因素
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

S154.36

基金项目:

国家自然科学基金项目(42225708,42077052)资助


Differences in Rare Bacterial Community Compositions at High Elevation Regions and Their Influencing Factors in Farmland and Forest Soils
Author:
Affiliation:

Fund Project:

Supported by the National Natural Science Foundation of China (Nos. 42225708 and 42077052)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    微生物群落常含大量稀有物种,对土壤生态系统功能具有重要影响。然而,山地生态系统土壤稀有微生物群落的海拔分布格局及其受土地利用类型的影响鲜有报道。沿着云南老君山1 880~3 010 m的海拔梯度,采集农田和森林土壤,基于16S rRNA高通量测序分析细菌群落,基于相对丰度定义稀有物种,估算细菌群落稀有度,探究稀有细菌群落在两种土地利用类型的海拔分布模式及其影响因素。结果表明,农田和森林稀有度分别为0.266±0.71和0.209±0.064,其中农田土壤细菌群落稀有度显著高于森林21.56%,且随海拔增高呈显著降低趋势;两类土地利用类型细菌稀有度的关键驱动因子均为pH和电导率。此外,两种土地利用类型的Chao1等α多样性随海拔升高呈显著单调下降模式;与森林相比,农田土壤稀有物种的α多样性较高,而β多样性较低,表现为同质化现象。整体而言,土壤稀有细菌群落结构受土地利用类型、海拔及两者交互作用的显著影响,其中土地利用类型的作用最大。农田和森林土壤稀有细菌群落受到pH、含水率、电导率和全氮等理化性质的影响,其中pH的作用最强。与农田相比,森林稀有细菌群落与更多的理化性质显著关联,表明其对环境变化更为敏感。综上,老君山农田和森林土壤稀有细菌群落均呈显著下降的海拔分布模式,主要受pH等环境因素驱动;相关研究结果有助于深入理解土壤稀有细菌群落在土地利用类型变化下的形成和维持机制,为山地生态系统土地资源可持续发展提供科学参考。

    Abstract:

    【Objective】 Microbial communities contain a lot of rare species and play important roles in soil ecosystem functioning. However, the elevational patterns of rare microbes in soils and their effects by land-use types remain elusive for mountain ecosystems. 【Method】 In this study, soil samples were collected from farmland and forest along an elevational gradient ranging from 1 880 to 3 010 m in Laojun Mountain, Yunnan Province, China. The bacterial communities were analyzed based on high-throughput sequencing of the 16S rRNA gene. Rare species were defined based on their relative abundance and the rarity of bacterial communities was determined. The elevational patterns of rare bacterial communities and their underlying factors for the two land-use types were further explored. 【Result】 It was found that the bacterial rarity was 0.266±0.71 and 0.209±0.064 in the farmland and forest, respectively. The rarity in the farmland was significantly higher by 21.56% than in the forest and showed a significantly decreasing elevational trend. The main drivers of bacterial rarity were pH and electrical conductivity in both land-use types. The alpha diversity, such as the Chao1 index, Shannon index, and Evenness index of rare bacterial communities were significantly higher in farmland soil than in forest soil, with increases of 19.99%, 4.43%, and 0.64%, respectively. In addition, the Chao1 diversity index of rare bacteria of both land-use types, showed a significantly decreasing elevational pattern of 31.39% and 34.40%, respectively. Also, the Shannon index of rare bacteria of farmland soil showed a significant decrease of 4.93% with elevation. Compared to the forest, the rare bacterial communities in farmland had significantly higher alpha diversity and lower beta diversity, the latter of which indicates biotic homogenization. In addition, for forest soil, the relative abundance of Actinobacteria showed a significant U-shaped elevational pattern, and the relative abundance of Bacteroidota and Chloroflexi showed significant increasing and decreasing elevational patterns, respectively. However, there was no significant elevational pattern of all the dominant phyla in farmland soil. Overall, the community compositions of rare bacteria were significantly influenced by the land-use type, elevation changes, and their joint effects, where the land-use type showed the greatest effect. Rare bacterial communities in farmland and forest soils were mainly influenced by physicochemical properties such as pH, moisture, electrical conductivity, and total nitrogen, with pH having the strongest effect. Compared to farmland, the rare bacterial communities of forest showed significant relationships with more physicochemical properties and higher correlations, and thus had greater sensitivity to environmental changes. 【Conclusion】 In summary, the rare bacterial communities of both farmland and forest soils showed a significantly decreasing elevational distribution pattern in Laojun Mountain, which was mainly driven by environmental factors such as pH. The findings of this study reveal the important roles of land-use type and elevation on soil rare bacterial communities on mountainsides. These results will help to foster a deep understanding of the formation and maintenance mechanisms of soil rare bacterial communities under land-use changes and provide scientific guidance for the sustainable development of mountain ecosystem land resources.

    参考文献
    相似文献
    引证文献
引用本文

肖茜文,胡盎,吴浩,王建军.高海拔地区农田和森林土壤稀有细菌群落结构差异及影响因素[J].土壤学报,2025,62(3):881-892. DOI:10.11766/trxb202402030059 XIAO Xiwen, HU Ang, WU Hao, WANG Jianjun. Differences in Rare Bacterial Community Compositions at High Elevation Regions and Their Influencing Factors in Farmland and Forest Soils[J]. Acta Pedologica Sinica,2025,62(3):881-892.

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-02-03
  • 最后修改日期:2024-08-23
  • 录用日期:2024-09-18
  • 在线发布日期: 2024-09-23
  • 出版日期:
文章二维码