实验增温对土壤微生物的影响:基于meta分析
DOI:
作者:
作者单位:

南京信息工程大学

作者简介:

通讯作者:

中图分类号:

基金项目:

江苏省科技厅碳达峰碳中和专项


Effects of experimental warming on soil microorganisms, based on a meta-analysis
Author:
Affiliation:

1.Nanjing University of Information Science &2.Technology

Fund Project:

the Carbon Peak and Carbon Neutrality Special Project of Department of Science and Technology of Jiangsu Province, China

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    微生物群落在土壤的各种生态活动中占据重要地位,能通过改变土壤生态系统的结构和功能,调控土壤养分供给。目前土壤微生物群落对增温的响应规律与主要影响因素尚不明确。从已经发表的206篇国内外研究文献中收集了1020组数据,通过整合分析(Meta-analysis)法研究实验增温对土壤微生物群落(微生物生物量、群落多样性和土壤酶活性)的影响,讨论土壤微生物群落对不同增温幅度、增温年限、增温方式、种植方式及生态系统类型的差异响应,挖掘土壤微生物群落对增温处理的响应与环境因子(年平均降水量、年平均气温和平均海拔)之间的关系。结果表明:实验增温使土壤微生物群落多样性显著下降6.7%的同时使土壤抗氧化类酶、土壤碳(C)转化相关酶、氮(N)转化相关酶活性分别显著提高了7.5%、10.8%和19.7%。高增温幅度(≥4℃)更显著降低土壤微生物生物量,并增加土壤抗氧化酶和C转化酶活性;低增温幅度(≤2℃)对土壤微生物群落多样性、土壤N转化酶和磷(P)转化酶具有更显著影响。长期(>2 a)增温对土壤微生物生物量、群落多样性、抗氧化酶和C转化酶有显著影响,而N转化酶和P转化酶对中期(0.5~2 a)增温的响应更显著。不同生态系统土壤微生物对增温响应也存在差异。土壤P转化酶活性对增温的响应与平均气温、年降水量呈显著正相关关系,而土壤微生物群落多样性与平均气温、年降水量和平均海拔呈显著负相关关系。综上,实验增温显著降低土壤微生物群落多样性的同时提高了土壤酶活性,而增温幅度、增温年限和生态系统类型均会影响增温效应。

    Abstract:

    【Objective】Microbial community plays an important role in soil ecological activities. It can regulate soil nutrient supply by changing the structure and function of the soil ecosystem. At present, the response of soil microbial community to warming and the main influencing factors are not well understood.【Method】This study collected 1 020 sets of data from 206 published domestic and foreign research literature and synthesized them to evaluate the effects of experimental warming on soil microbial community (microbial biomass, community diversity, and soil enzyme activity) using meta-analysis. The different responses of soil microbial communities to different magnitudes, durations and methods of warming, as well as planting habits and ecosystem types were evaluated and discussed. Also, we explored the relationship between the response of soil microbial communities to warming treatment and environmental factors (annual mean precipitation, annual mean temperature, and mean altitude).【Result】It was found that experimental warming decreased the soil microbial community diversity by 6.7%, increased the activities of soil antioxidant enzymes, enzymes related to carbon (C), and nitrogen (N) conversion by 7.5%, 10.8%, and 19.7%, respectively. A high magnitude of warming (≥4℃) significantly reduced soil microbial biomass and increased the activities of soil antioxidant enzymes and enzymes related to C conversion. Low- temperature increase (≤2℃) had more significant effects on soil microbial community diversity and soil enzymes related to N and phosphorus (P) conversion. Also, long-term warming (>2 years) had significant effects on soil microbial biomass, community diversity, antioxidant enzymes and enzymes related to C conversion. The responses of enzymes related to N and P conversion to medium-term warming (0.5 to 2 years) were more significant and the response of soil microorganisms to experimental warming was different among different ecosystems. Further analysis revealed that the response of enzyme activities related to P conversion to warming was positively correlated with annual mean temperature and annual precipitation. The response of soil microbial community diversity was negatively correlated with mean annual temperature, annual precipitation and mean altitude.【Conclusion】In summary, the experimental warming significantly reduced the diversity of soil microbial communities while increasing soil enzyme activity. The warming amplitude, warming duration, and ecosystem type all affect the effects of experimental warming on soil microbes.

    参考文献
    相似文献
    引证文献
引用本文

赵雯钰,苗润,程诚,王琪.实验增温对土壤微生物的影响:基于meta分析[J].土壤学报,,[待发表]
ZHAO Wenyu, MIAO Run, CHENG Cheng, WANG Qi. Effects of experimental warming on soil microorganisms, based on a meta-analysis[J]. Acta Pedologica Sinica,,[In Press]

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-02-18
  • 最后修改日期:2024-06-04
  • 录用日期:2024-07-05
  • 在线发布日期:
  • 出版日期: