Abstract:【Objective】This study aimed to investigate the impact of different nitrogen fertilizer application rates on the growth and reproduction of Folsomia candida and their effects on soil micro-aggregates.【Method】Soil samples from field experiments with varying nitrogen application rates (N0: 0 kg·hm-2, N90: 90 kg ·hm-2, N180: 180 kg·hm-2, N270: 270 kg·hm-2, N360: 360 kg·hm-2) were cultivated to examine the differences in Folsomia candida reproduction, total body weight, and their effects on soil micro-aggregates over different cultivation periods (28 d, 42 d, 56 d).【Result】The results indicated that nitrogen application significantly affected soil pH, with the N360 treatment showing a decrease of 0.9 pH units compared to the N0 treatment (P < 0.05). The reproduction of Folsomia candida showed significant differences among the nitrogen treatments as the cultivation period extended. After a 56 d cultivation period, the reproduction number in the N0 treatment was 1.10-1.53 times higher than that in the other treatments (P < 0.05). The total biomass of Folsomia candida larvae generally followed the same trend as the reproduction, with the lowest values observed in the N360 treatment across all cultivation periods. Also, Folsomia candida significantly increased the quantity of 0.05-0.01 mm micro-aggregates by 11.3%-48.4% compared to the untreated soil samples, and significantly decreased the quantity of 2-0.25 mm small aggregates by 27.9%- 60.9%, with more pronounced effects as the cultivation period extended (P < 0.05). The mean weight diameter (MWD) and geometric mean diameter (GWD) of soil under all nitrogen treatments were significantly lower than those of the untreated soil samples (P < 0.05).【Conclusion】The growth and reproduction of Folsomia candida were inhibited by nitrogen fertilization, and high densities of Folsomia candida can increase the content of soil micro-aggregates but destroy small aggregates, leading to reduced soil stability. The results of this study will provide a scientific reference for improving soil structure.