土壤碳氮比的可见-近红外与中红外光谱预测
作者:
作者单位:

1.南京信息工程大学长望学院;2.贵州省烟草科学研究院;3.中国烟草总公司贵州省公司;4.土壤与农业可持续发展国家重点实验室中国科学院南京土壤研究所;5.南京信息工程大学地理科学学院

基金项目:

国家自然科学基金项目(42107322)、中国烟草总公司项目“黔桂生态区植烟黄壤保育技术研发与应用”(110202102038)、中国烟草总公司贵州省公司项目“贵州植烟土壤固碳时空变化特征与低碳路径研究”(2023XM11)


Prediction of Soil Carbon-to-Nitrogen Ratio Based on Visible-Near Infrared and Mid-Infrared Spectroscopy
Author:
Affiliation:

1.Changwang School of Honors, Nanjing University of Information Science Technology;2.Guizhou Academy of Tobacco Science;3.China National Tobacco Corporation Guizhou Provincial Company;4.State Key Laboratory of Soil and Sustainable Agriculture,Institute of Soil Science,Chinese Academy of Sciences;5.School of Geographical Science, Nanjing University of Information Science Technology

Fund Project:

The National Natural Science Foundation of China (No. 42107322)、the Key Research and Development Project of China National Tobacco Corporation “Research, Development and Application of Yellow Soil Conservation Technology for Tobacco Cultivation in the Guizhou-Guangxi Ecological Region” (110202102038)、the National Tobacco Corporation project “Research and Application of Tobacco Planting Yellow Soil Conservation Technology in Guizhou-Guangxi Ecological Zone”(2023XM11)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    土壤碳氮比(C/N)不仅可以反映土壤质量,也可以衡量土壤碳氮元素的营养平衡状况,其数值和等级的快速准确测定对指导实时科学施肥和提升土壤质量具有重要意义。本研究利用贵州省501个烤烟-玉米轮作典型农田耕层(0~20 cm)土壤样品的可见-近红外光谱(VNIR)和中红外光谱(MIR)信息以及总有机碳(TOC)、全氮(TN)和C/N数据,对光谱进行Savitzky-Golay(SG)平滑去噪和标准规一化处理后,分别应用偏最小二乘回归(PLSR)、随机森林(RF)和Cubist三种方法进行建模,通过直接预测C/N和间接预测(先分别预测TOC和TN再计算C/N)两种方式构建了土壤C/N预测模型,并对C/N数值和等级预测精度进行了解析。结果表明:(1)对于C/N数值预测,虽然最优预测策略为MIR-PLSR的直接预测,但预测精度(相对标准误差,RPD)仅为1.20;(2)C/N等级可以被准确预测,最优策略为MIR-PLSR模型的直接预测,等级判定精度为0.71;(3)C/N数值预测精度较低的原因主要有两方面,其一是烟田较为一致的严格施肥措施降低了耕层土壤碳氮含量的空间差异,从而也降低了C/N的空间变异(变异系数为17.15%,中度变异),二是C/N与VNIR、MIR光谱的相关性均较低。因此,基于MIR-PLSR可以对C/N等级进行直接预测。

    Abstract:

    【Objective】The soil carbon-to-nitrogen ratio (C/N) reflects not only soil quality but also the nutrient balance of soil carbon and nitrogen elements. Thus, rapid and accurate determination of this ratio and the grade is crucial for guiding real-time scientific fertilization and improvement of soil quality. 【Method】This study used visible-near infrared (VNIR) and mid-infrared (MIR) spectroscopic data, along with total organic carbon (TOC), total nitrogen (TN), and C/N data from 501 typical tobacco-corn rotation farmland topsoil samples (0~20 cm) in Guizhou Province for characterization. After processing the spectra with Savitzky-Golay (SG) smoothing and standard normalization, three modeling methods were applied: partial least squares regression (PLSR), random forest (RF), and Cubist. Models for predicting soil C/N were constructed using both direct prediction of C/N and indirect prediction (first predicting TOC and TN, then calculating C/N), and the precision of C/N value and grade predictions was analyzed. 【Result】The results revealed that: (1) For C/N value prediction, the optimal prediction strategy was direct prediction using MIR-PLSR, which had a prediction precision (relative standard error, RPD) of 1.20; (2) C/N grade could be accurately predicted, with the optimal strategy being direct prediction using the MIR-PLSR model, achieving a grade determination accuracy of 0.71; (3) The main reasons for the low prediction accuracy of C/N values are twofold. First, the uniform stringent fertilization measures in the tobacco fields have reduced the spatial variation in the carbon and nitrogen content of the plow layer soil, thereby also reducing the spatial variation of C/N (the coefficient of variation is 17.15%, indicating moderate variation). Second, the correlation between C/N and both VNIR and MIR spectra was relatively low. 【Conclusion】Therefore, the MIR-PLSR model can be used for direct prediction of C/N grades.

    参考文献
    相似文献
    引证文献
引用本文

孔祥麒,高维常,潘文杰,蔡 凯,杨 静,李德成,郑光辉,曾 荣.土壤碳氮比的可见-近红外与中红外光谱预测[J].土壤学报,2025,62(3). DOI:10.11766/trxb202404120152 KONG Xiangqi, GAO Weichang, PAN Wenjie, CAI Kai, YANG Jing, LI Decheng, ZHENG Gaunghui, ZENG Rong. Prediction of Soil Carbon-to-Nitrogen Ratio Based on Visible-Near Infrared and Mid-Infrared Spectroscopy[J]. Acta Pedologica Sinica,2025,62(3).

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-04-12
  • 最后修改日期:2024-07-31
  • 录用日期:2024-09-30
  • 在线发布日期: 2024-10-24
文章二维码