土壤有机磷的矿化及其调控研究进展
作者:
作者单位:

1.华中农业大学资源与环境学院;2.江西农业大学国土资源与环境学院;3.土壤与农业可持续发展国家重点实验室(中国科学院南京土壤研究所)

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)


Research Progress on Soil Organic Phosphorus Mineralization and Its Regulation
Author:
Affiliation:

1.College of Resources and Environment, Huazhong Agricultural University;2.College of Resources and Environment;3.College of Land Resources and Environment;4.State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences

Fund Project:

The National Natural Science Foundation of China (General Program, Key Program, Major Research Plan)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    有机磷作为土壤磷库的重要组成部分,其矿化过程在全球磷循环中发挥着重要作用,深入理解土壤有机磷矿化过程有助于陆地生态系统中磷的高效利用与管理。土壤有机磷矿化机制主要关注由能量需求驱动的微生物对有机质氧化的生物矿化,以及植物对磷养分需求驱动的磷酸酶介导有机磷水解的生化矿化。近年来,非生物矿化尤其是矿物表面催化水解矿化机制及其作用也越来越受到重视。土壤生态系统中的碳(C)和氮(N)等生源要素与土壤有机磷矿化密切相关,其中碳通过有效驱动微生物对有机磷进行矿化,而氮则通过酶代谢的方式实现,二者相互作用,深刻影响土壤有机磷矿化过程。此外,不同农艺措施(如施肥方式、耕作方式、施用生物炭等)、土壤理化性质(如pH、温度、土壤含水量、土壤通气状况等)、微生物生物量、土壤CO2浓度、植被、污染物等诸多因素均会影响土壤有机磷矿化并产生相应的环境生态效应。本文综述了土壤有机磷矿化研究进展,归纳了有机磷矿化的土壤过程、影响因素和调控途径,并提出了当前存在的问题与未来展望。

    Abstract:

    Soil organic phosphorus (P) is an important component of the soil P pool and its mineralization plays an important role in global P cycling. Understanding the mineralization of soil organic P is beneficial for the efficient utilization and management of P in terrestrial ecosystems. In recent years, the application of advanced techniques such as modern spectroscopy, chromatography, and mass spectrometry has provided crucial avenues for a more comprehensive characterization of the composition and structure of organic P. This review summarizes the applications of these technologies in quantifying changes in soil organic P content. Organic P, following mineralization, is converted into inorganic P(Pi), making it available for direct uptake and utilization by plants and microorganisms. Soil organic P mineralization is orchestrated by two primary pathways: enzymatic and mineral-mediated processes. Delving into the mechanisms of biological catalysis and abiological mineral-mediated catalysis is crucial for elucidating the control pathways of organic P. The mechanisms of soil organic P mineralization can be divided into biological mineralization driven by the oxidation of organic matter by microorganisms (phoA, phoD, and phoX) in response to energy demand, and biochemical mineralization driven by the release of Pi nutrients from plants in response to the demand for P nutrients mediated by phosphatases. Recent investigations have underscored the significance of minerals as an abiological mineralization pathway, shedding light on the mechanisms and actions of mineral-mediated catalysis. The surfaces of minerals (such as iron (hydro)oxides, manganese (hydro)oxides, and aluminum (hydro)oxides) provide an enzyme-like environment, facilitating the cleavage of phosphate ester (P-O-C) and terminal phosphoanhydride (P-O-P) bonds, resulting in the hydrolysis of organic P to Pi. In soil ecosystems, the biogenic elements carbon (C) and nitrogen (N) are intimately linked with soil organic P mineralization. From a nutrient factor perspective, elucidating the driving patterns of organic P mineralization can inform strategies to regulate soil P pools. Specifically, C effectively drives microbial mineralization of organic P, whereas N influences enzymatic metabolism, with the interplay between the two elements profoundly influencing the soil organic P mineralization process. The multiple forms of organic P present in soils are susceptible to influences from various external factors, which modulate phosphatase activity and alter organic P content, thereby further affecting the mineralization process. Various factors, including agricultural practices (such as fertilizer application, tillage practices, and biochar application), soil physical and chemical properties (such as pH, temperature, soil water content, and soil aeration status), microbial biomass, soil CO2 concentration, vegetation, and pollutants all impact soil organic P mineralization, resulting in corresponding environmental ecological effects. Therefore, regulating organic P mineralization is crucial for enhancing soil fertility and protecting the environment. Future strategies can focus on enhancing phosphatase activity, altering organic P composition, and increasing the abundance of phosphorus-solubilizing microorganisms to improve soil organic P mineralization. This review summarizes the advances in soil organic P mineralization research, synthesizing the soil processes, influencing factors, and control pathways, and highlighting the existing challenges and prospects.

    参考文献
    相似文献
    引证文献
引用本文

张万年,杨子,严玉鹏,王小明,殷辉,徐仁扣,谭文峰,冯雄汉.土壤有机磷的矿化及其调控研究进展[J].土壤学报,DOI:10.11766/trxb202404140154,[待发表]
Zhang Wannian, Yang Zi, Yan Yupeng, Wang Xiaoming, Yin Hui, Xu renkou, Tan Wenfeng, Feng Xionghan. Research Progress on Soil Organic Phosphorus Mineralization and Its Regulation[J]. Acta Pedologica Sinica, DOI:10.11766/trxb202404140154,[In Press]

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-04-14
  • 最后修改日期:2024-07-02
  • 录用日期:2024-07-17
  • 在线发布日期: 2024-07-17
  • 出版日期: