Abstract:【Objective】The seasonal dynamics of soil water and its changes along the soil depth restrict the growth and development of Caragana korshinskii plantation. Thus, by exploring the effects of precipitation types and rainfall on soil water content in the loess hilly area, this study seeks to clarify whether precipitation replenishment could meet the water demand of the growing season of Caragana korshinskii forest, and provide theoretical support for the ecological construction of artificial Caragana korshinskii forest in the loess hilly area.【Methods】The analyses in this study are based on precipitation and soil moisture data of Ansai Lime stick forest in Shaanxi Province from 2019 to 2023. The monthly dynamic changes of soil water under Caragana korshinskii forest at different depths were analyzed, and the response process of soil water to different precipitation types and rainfall during the growing season was investigated. The precipitation data was recorded every 30 minutes, and the soil water data were repeated at three monitoring points on the slope and under the slope, with the monitoring frequency of once an hour. The soil volumetric water content at 10 depths (10, 20, 30, 50, 70, 100, 200, 300, 500, 1 000 cm) was monitored. 【Results】(1) The precipitation in the study area could be divided into 5 types according to the characteristics of precipitation: light rain, moderate rain, large rain, heavy rain, and very torrential rain. Most of the precipitation events in the study area belonged to moderate rain type, with 59 events accounting for 46% of the total events. (2) Soil moisture content was affected by precipitation, and the annual variation of 0~100 cm soil moisture content showed a "double peak" pattern. In May to August, when Caragana korshinskii was growing vigorously, the seasonal dry layer appeared in the 50~100 cm soil layer. The occurrence time of the dry layer was closely related to the precipitation of the year, and the dry layer disappeared after sufficient precipitation recharge. (3) There was a significant positive correlation between rainfall type and soil water infiltration depth (R2 > 0.81), in which the infiltration depth of heavy rain and heavy rain was the deepest, reaching 100~200 cm, followed by moderate rain 10~70 cm, while light rain was limited to 0~10 cm. The response time of surface and deep soil of heavy rain was the shortest, followed by heavy rain, while the response process of light rain was relatively slow. Also, the soil water supply of rainstorm were significantly higher than that of other rainfall types, accounting for 87.5% of the secondary precipitation, followed by heavy rain (36.2%) and long-duration moderate rain (29.7%), while the precipitation of light rain and short-duration moderate rain was mostly lost in the form of evapotranspiration. 【Conclusion】(a) Most precipitation events in the study area belonged to the moderate rain type. The recharge efficiency of light rain and moderate rain was low, and more was loss in the form of evapotranspiration. Although the occurrence frequency of heavy rain was low, it played an irreplaceable role in replenishing soil water. (b) During the flourishing period of Caragana korshinskii growth in summer, the 50~100 cm soil layer generally had different degrees of seasonal drought, which adversely affected the normal growth of vegetation. However, the infiltration depth of heavy rain and rainstorm events reached approximately 50 cm and replenished soil water, and the annual precipitation could meet the needs of Caragana korshinskii growth.